·上一文章:基于HIP4081的厚膜H桥电机驱动电路设计
·下一文章:升压ZVT-PWM转换器在单项功率因数校正中的应用
(5)BP神经网络各参数调整量的图形化程序根据上述学习算法中的式(6)和式(7),其中:x为网络输入样本;y,£分别为网络实际输出和期望输出;h为隐层输出;v为隐层输出权值。通过调用LabVIEw软件中数学计算控件,经过一系列数学计算,分别得到网络隐层输出权值调整量△v以及隐层输入权值调整量△w,如图9、图10所示。
(6)完整的学习算法的图形化程序。将以上各个程序模块综合在一起,可以得到完整的学习算法实现程序,如图11所示。
通过设定网络的输入样本z、输出期望t、隐层输入权值w,输出v的初始值,经过一系列的矩阵运算,获得调整后隐层权值w,v参数值。运行结果如图12所示,由图可以非常直观看出,网络输出与网络理想输出相当接近,说明网络训练的结果是满意的。
3 结 语
在利用LabVIEw实现BP神经网络的计算,方法一通过直接调用Matlab程序,简单易行,只是事先需要装有Matlab5.O以上的版本。方法二运用图形化编程对BP神经网络进行仿真,具有形象、直观、便于使用和理解的优于传统文本编程语言的特点。