首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
LabVIEW中BP神经网络的实现及应用
来源:本站整理  作者:佚名  2009-07-14 09:50:14



BP神经网络隐层输入在LabVIEw中的实现。根据BP学习算法中式(1)编写相应的程序。其中x为输入样本;w为隐层输入权值,主要应用LabVIEw中的函数一数学一线性代数一矩阵A×B实现权值与输入样本的矩阵相乘,并通过For循环计算得到BP神经网络的
隐层输人H(见图6)。
    (2)BP神经网络隐层输出H的图形化程序。根据算法中的式(2)编写,由于在很多测试实践中参数间的关系是非线性的,这里主要应用Sigmoid型tansig函数作为隐层的传递函数,主要应用程序面板中函数一数学一数值及基本与特殊函数等数学控件实现(见图7)。
    (3)BP神经网络输出层的输入及输出程序框图与隐层的类似,分别根据式(3)、式(4)编程即可实现,在此不再重复。
    (4)网络误差函数E的图形化程序。根据算法中式(5)编写程序,其中:t为理想输出,y为网络输出。其中应用函数一数学一基本与特殊函数中的指数函数控件来实现(见图8)。

    (5)BP神经网络各参数调整量的图形化程序根据上述学习算法中的式(6)和式(7),其中:x为网络输入样本;y,£分别为网络实际输出和期望输出;h为隐层输出;v为隐层输出权值。通过调用LabVIEw软件中数学计算控件,经过一系列数学计算,分别得到网络隐层输出权值调整量△v以及隐层输入权值调整量△w,如图9、图10所示。
    (6)完整的学习算法的图形化程序。将以上各个程序模块综合在一起,可以得到完整的学习算法实现程序,如图11所示。

    通过设定网络的输入样本z、输出期望t、隐层输入权值w,输出v的初始值,经过一系列的矩阵运算,获得调整后隐层权值w,v参数值。运行结果如图12所示,由图可以非常直观看出,网络输出与网络理想输出相当接近,说明网络训练的结果是满意的。

3 结 语
    在利用LabVIEw实现BP神经网络的计算,方法一通过直接调用Matlab程序,简单易行,只是事先需要装有Matlab5.O以上的版本。方法二运用图形化编程对BP神经网络进行仿真,具有形象、直观、便于使用和理解的优于传统文本编程语言的特点。

上一页  [1] [2] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:49,531.25000 毫秒