1 基本方程
1.1 激发方程
令第n次本征模式轴向电场为:
可得扰动电子注激励的电场为:
式中:定义为n次谐波的耦合阻抗;
ψ(r⊥)为电子注横向分布函数y)ds。所有本征模中只有个别模式与电子注同步,且除了电子流i(z)激发的同步波之外,还有输入的“冷波”,即E0e-r0z,则具有外加激励源E0e-r0z的同步场为:
式中:K0,г0,β0分别为该同步模式的耦合阻抗、传播常数、相位常数。式(1)两边同时对z求导2次得到熟知的激发方程:
1.2 运动方程
相对论下电子的运动方程为:
能量守恒方程为:
式(4)代入式(3)可得一维电子运动方程:
又由:
所以式(5)可写为:
其中:Ez=Ecz(线路场)+Esz(空间电荷场);y=(1一v2/c2)-1/2为相对论因子,c为真空中的光速,v为电子速度。
1.3 电子流复振幅方程
电子流是时间的非简谐周期函数,含有高次谐波,用傅氏分析。
2 慢变系统中归一化
上述是在实验室坐标系下得到的迅变方程,为了处理问题的方便和计算结果普遍性强,通常将其归一化到电子坐标系内,获得慢变方程。
为了表述方便,先引入迅变坐标系的归一化量:归一化距离为ξ=ω/v0z=βez;归一化时间为φ=ωt=2πt=/T,归一化场为f=|e|E/mvoω。则慢变系统中的归一化:归一化轴向距离为θ=Cξ=Cβez;归一化相位φe=ψ-ξ;归一化场幅值为Fcn(θ)=(eE/C2mvoω)ejnθ;归一化电流幅值为
式(8)~(10)组成了行波管大信号注一波互作用基本工作方程组。其中Cn3=I0Kcn/4V0为n次谐波增益参量,bn=(V0一Vpn)/C1Vpn非同步参量,dn=aon/βeCn为衰减常数,rn=bn-idn。
3 空间电荷场的计算
由文献可知z0处圆盘在z处圆盘平面上各点产生的平均空间电荷场为:
其中:Q为圆盘所带电量;6为电子注半径;a为漂移管半径,如图1所示,μ0n为零阶Bessel函数的第n个根。由此可知场是关于z的函数,可以表示为:
其中:B(| z—z0|)是以| z—z0|为变量的函数,由式(11)可以做出如图1所示曲线。