首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
一种新的变步长波束形成算法
来源:本站整理  作者:佚名  2009-08-19 10:03:07



2.4 α和β对算法性能的影响
    参数α和β的不同选择可以影响算法的收敛速度和稳态失调。这里,参数a的值是通过试验的方法来确定的,首先给定一α值,比如α=0.5,这样就能得到一条学习曲线,然后逐渐改变α值,以得到一组学习曲线,选择收敛效果最好的一条曲线来确定α值。由式(13)可知,当α较小时算法的收敛速度较快,但平稳性较差,而α较大时,算法的收敛速度变慢。因此,可以选择适当的α值,使算法既获得较快的收敛速度同时又有比较低的稳态失调。β的作用是对步长因子起平滑作用,如果曲线上相邻个点波动较大,应该选择较大的β值,反之,应选择较小的值。这样就能够因eil(m)波动较大使得步长因子μ(m)波动也较大,从而实现较好的收敛性能。

3 仿真结果
   
假设在高斯白噪声信道中,基站天线为8阵元的等间隔直线阵列;阵元间隔为半个载波波长,信噪比为15dB;信干噪比为10dB;扩频因子为3l;期望信号入射角为30°,干扰方向为一50°,迭代次数为1000次。
3.1 收敛性能
    DR—LMS算法和新算法在一个比特周期的时间上所有采样只计算一个加权向量。图l和图2为两种算法的收敛曲线,在DR—LMS算法中迭代步长设为μ=O.000045,在新算法中,设α=0.8,β=0.2,同样令起始步长μopt=0.000045。从两种算法的收敛曲线上可以看出:在同样条件下,DR—LMS算法在迭代大约500次的时候就可以收敛,而本文提出的算法只需迭代300次左右就可以收敛,收敛速度明显好于文献中提到的算法。
3.2 波束图
   
从图3和图4可见,文献中DR—LMS算法和本文所提出的算法都可以很好的在期望方向形成波束图,对干扰方向信号的抑制也比较明显。

3.3 算法复杂度的比较
   
文献中LS-DRMTCM算法的复杂度为H(2M2+M),其中H为采样数据块的大小,M为阵列天线的阵元个数。在文献中,DR—LMS算法的复杂度为2HM,本文所提出的算法,在DR—LMS算法基础上加入了变步长,但这没有增加算法的复杂度,本文算法中步长并不包含任何指数运算,计算很简单,只需极少的乘法运算,因此计算复杂度较低,和DR—LMS算法计算量大体相当。

4 小结
   
本文以移动通信中智能天线技术为研究背景,研究了基于码滤波的盲自适应波束形成算法,文献在Rong等人提出LS-DRMTCM算法的基础上提出了DR—LMS算法,本文在这一思路的引导下对DR—LMS算法作了进一步改进,引入了变步长算法。通过仿真比较,在跟踪性能上和文献中所提到的算法相当,但在收敛性能上却有明显的提高。

上一页  [1] [2] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:138,976.60000 毫秒