3.4.1一个周期的正弦波的产生
首先,在DSP内部ROM开辟一段存储空间作为一个周期的正弦波抽样点存储器。通过软件对该存储器进行相位-幅值的转换,从而在给定的时间确定相应的输出幅值。流程图如图3所示,具体是这样实现的:
在内部ROM存放M 个采样点,即把2п分成了M 份,每份为,也就是说最小的相位增量(相位分辨率)为,用采样速率F5去采样,相位增量为。相位增量的大小随采样速率F5的不同而不同,一旦给定了相位增量,输出频率也就确定了。输出信号频率为,输出一个周期需要的时间是,当用这样的数据寻址时,正弦查表就把存储在内部ROM中的抽样值转换成正弦波幅度的数字量函数。
上面讨论可以看出,可以产生的频率范围受采样率和存储器内采样点的个数的影响。在这里,采样率是软件设计的,即利用不同的延时程序实现不同的采样率。根据奈魁斯特抽样定理,一个频谱受限信号要想从抽样信号中无失真的恢复出原连续信号,抽样间隔必须不大于1/2Fm(Fm为最高频率,在这里Fm即为正弦波的频率F)或者说,最低抽样频率为2F。因此,M应该>=2。但M越大,得到的波形越好。通常情况,为了得到比较好的波形,我们取M>=8。在M一定的情况下,提高F5可以提高输出的最高频率。
图3 发送一个频率的正弦波流程图
3.4.2 4FTSK信号的产生及输出
4FTSK信号包含4个频率的波形,因此先根据不同的频率,计算出相应的采样率,编写产生这四个频率正弦波的子程序。在主程序中,判断要调制的码元,决定发送的4个频率的顺序。信号最终是通过I/O口输出到D/A转换芯片中实现从数字量到模拟量的转换。
4 结论
本文采用DSP和DA转换芯片实现4FTSK的调制。由于DSP的运算速度很高,采样率Fs有很宽的动态范围,因此它可以在很宽的频率范围内输出幅度平坦的信号。同时,该系统易于集成、易于调整,输出不同的频率只需要软件设置不同的采样率。这种方式在相对带宽、频率转换时间、相位连续性以及集成化等一系列性能指标方面具有较高的水平,为系统提供了优于模拟信号源的性能。该系统不仅可以实现FTSK调制,也可以通过预置相位累加器的初始值,精确地控制合成信号的相位,实现其他数字调制方式,如DPSK调制等。
参考文献
[1] 沈琪等编著 短波通信 西安电子科技大学出版社 1989年
[2]李刚主编 数字信号微处理器的原理及其开发应用 天津大学 2000年4月
[3]樊昌信 等编著 通信原理 国防工业出版社 1995年4月