2 扩频时钟发生器总体结构
降低电磁干扰(EMI)是电子系统设计人员需要考虑的重要因素,扩频时钟(CLK)为降低EMI提供一个有效途径。这里采用tsmc0.18μm 工艺设计一款符合DisplayPort标准发射端的扩频时钟发生器。在合理设计锁相环路的基础上,运用外加电荷泵对压控振荡器的控制电压进行三角波调制,得到所需要的扩频时钟。图1为该设计结构框图。
3 各模块电路设计
3.1 鉴频鉴相器电路
图2为鉴频鉴相器电路框图。鉴频鉴相器的输出由输入信号的频率和相位决定,它比较两个输入信号的上升沿,当输入参考时钟信号Ref的上升沿超前反馈信号Fed的上升沿到达鉴频鉴相器时,鉴频鉴相器的输出UP为高,而此时DOWN保持为低电平,当Fed的上升沿也到来时,输出被复位;当信号Fed的上升沿超前参考信号Ref到来时,输出DOWN为高,当Ref的上升沿也到来时,鉴频鉴相器被复位。因此,鉴频鉴相器根据输入信号相位差来驱动后级电路。比较两个输入信号的相位差,然后将其转变成两个数字信号来控制电荷泵的工作状态。在本设计中,由于参考输入频率仅为900 kHz,因而对鉴频鉴相器的工作速度要求并不高。因此,在满足低功耗要求的前提下,采用最简单的无死区鉴频鉴相器的结构。
为了避免死区,在复位路径中引入延时T。在设计延时时长时,首先应考虑鉴频鉴相器的工作频率。因为鉴频鉴相器的最高丁作频率为1/2Tdelay,Tdelay包括插入延时和鉴频鉴相器的内部延时。要求插入延时的引入不影响鉴频鉴相器的正常工作;另外需考虑当插入延时相对较长时,电荷泵的充、放电电流同时开启的时间就会变长,而电荷泵存在的失调就会在滤波器电容上引入抖动,即增加锁相环输出的杂散成分。因此,在鉴频鉴相器内部延时可忽略及充分开启电荷泵的前提下,应尽量减小失调。这里插入延时取8 ns。由于后级电荷泵电路为差分输入,因此采用传输门减少反相器的延时。
3.2 带隙基准电路
为满足带隙基准电路的低压应用,这里采用一种电流模式结构的低压带隙基准电路,如图3所示。该电路可以输出低于1 V的电压,有效降低了电路的电源电压;同时,电路中采用与电压无关的偏置及带负反馈网络的二级运放,降低了电路的电源敏感性。
基于0.35μm CMOS工艺的HSPICE仿真结果表明,该电路可工作在1.1~1.5 V的低电源电压下,并具有14 ppm/℃的低温度系数,能够输出200 mV~1.25 V的宽范围电压,并使用与电源无关偏置以及带负反馈网络的二级运放,提高输出电压的精度,该电路中,各MOS管都工作于饱和状态。电路中运算放大器采用二级结构,具有较高的低频增益。
3.3 电荷泵电路
电荷泵锁相环具有低功耗、高速、低抖动和低成本等特点,广泛应用于无线电通信、频率综合器、时钟恢复电路中。电荷泵电路在锁相环路(PLL)中起着非常重要的作用,其主要功能是把鉴频鉴相器(PFD)的数字信号UP和DOWN转换为模拟信号,从而控制压控振荡器(VCO)的频率。当PFD给出高精度的相位误差时,电荷泵对整个环路的性能起决定性作用。当PLL锁定在某个频率时,电荷泵电路的输出必须保持在一个常数。因此,在设计电荷泵电路时,产生一个稳定步长的电压是很重要的。实际的电荷泵不可避免的存在电荷泄漏、充放电流失配、泵开关时间延时不同等不利因素,这些因素都不同程度地造成输出频率的相位偏差,进而降低输出时钟的抗噪声性能。该系统设计采用差分电路结构,此结构具有以下优点:消除了跳跃现象;可以丁作在较高频率,满足整个PLL的设计要求;由于对称性,不易产生偏差;减小电源、地及衬底噪声的影响;NMOS与PMOS开关特性不匹配对整个性质将不再起决定性作用,原来要求NMOS与PMOS相匹配的地方,现在只需NMOS或PMOS自身相匹配即可。该电荷泵电路如图4所示,它由大摆幅电流镜及由上拉泵和下拉泵电路所构成的对称电荷泵所组成,属于全差分型电荷泵电路。上拉泵和下拉泵均由差分输入对V M1和VM2,电流镜VM3,偏置电流源Ib和ISMALL,以及弱上拉电流镜VM4和VM5所组成。该电路是一种新的全差分电荷泵结构,与传统电荷泵电路相比,该电路具有输出范围宽和无跳跃现象等优点,同时还可以有效地解决电荷泄漏和充放电失配等问题。