3.2 信号判决门限值的计算
信号判决门限值的计算也是信号检测最关键的部分,首先根据信噪比为3 dB,算出雷达信号大概是噪声信号的1.41倍。既要检测出有用的雷达信号,又要避免将噪声误判为信号,如果门限选得很高,则虚警概率很低,但接收机的灵敏度也会降低,这是不能接受的,通常情况下,每隔几十秒报告一次错误的信息是可以接受的,接收机后的信号分类处理器会将其滤除掉。同时实际上只通过单一门限判断雷达信号的效果无法令人满意,根据大量的试验数据确定了两级检测门限,即信号的第一检测门限定为1.3倍的噪声均方根值,信号的第二检测门限定为1.5倍的噪声均方根值,这样既利于DSP的快速计算处理,又省去了耗费很多时间的复杂傅里叶计算,而且倍数可根据信噪比的不同进行调整。设信号的第一检测门限为Z1,信号的第二检测门限为Zh,则:
4 雷达信号的FPGA检测方法
DSP处理器计算出雷达信号的判决门限值,FPGA芯片根据门限值从高速A/D转换器的转换结果中提取出雷达信号,检测方法有两种。
4.1 多样本检测方法
多样本检测方法即从N个连续样本中判断至少有L个样本必须超过门限,满足信号判决门限值的要求。
首先FPGA芯片存储了大量的采样数据,根据DSP处理器计算出的门限值,FPGA芯片不断检测A/D转换后的数据是否大于信号的第一检测门限Z1,如果满足要求,则判为有效信号开始,FPGA芯片对A/D转换的连续18个数据进行判断。在18个数据中,如果有7个数据都大于信号的第一检测门限Z1,则继续判断是否至少有3个数据大于信号的第二检测门限Zh,有则判断为检测到雷达信号,无则继续检测。实行双重门限检测是为了判断有用信号的开始和二次过滤噪声。
4.2 概率密度检测法
雷达信号检测的另一个方法是概率密度检测法,它根据150 ns需采样的18个数据,通过FPGA芯片不断计算连续18个数据点的输出和,并将结果除以18,与门限值(Zh)进行比较,计算和大于这一门限值,则判断为有信号,否则判断为无信号。
5 虚假信号的滤除
接收过程中会遇到幅度较大的大噪声,如果不做虚假信号的滤除,将有可能把它误判为一个有效信号。为了滤除此类噪声,对检测出的信号还要继续进行过滤处理,根据有效信号的前后时间段应对噪声(低电平)进行判断,如果有效信号的前后时间段检测为高电平,则将该检测信号判为大噪声。具体实现方法如下:FPGA芯片在检测到的信号前后各取6个A/D转换的数据,如果6个数据中有1个数据满足信号的第二检测门限Zh,则判断检测到的信号为虚假信号,需滤除。
6 结 语
试验证明上述FPGA的两种检测方法都可对信号进行有效检测,当只存在噪声时,接收机不产生虚假的信号;当输入单个信号时,接收机输出单个检测信号,不产生多余的虚假信号;当输入多个信号时,接收机则输出多个检测信号,有效实现了低信噪比情况下雷达信号的检测。
数字化的处理方法使得对各种信息的处理更具有灵活性、准确性和功能可扩展性,对数字化的信息进行存储、传输、处理也更加方便、快捷和可靠。所以基于数字化技术的信息处理是必然的发展趋势,具有广阔的应用前景。