3 理论分析
3.1 数字下变频FFT
随着高速A/D转换和DSP技术的发展,数字下变频的快速傅里叶变换FFT(Fast Fourier Transform)技术能够有效减少传统FFT技术存在的内存不足。在高中频、高采样率系统中实现信号频谱的高分辨率、低存储量和低运算量,从而极大提高系统的实时性。
图2为基于数字下变频的FFT技术的实现原理框图。
3.2 直接数字频率合成器DDS原理
用直接数字频率合成器DDS(Direct Digital Synthesiz-er)原理实现扫频信号的信号源主要由参考频率源、相位累加器、正弦波采样点存储RAM、数模转换器及低通滤波器构成。设参考频率源频率为fclk,计数容量为2N的相位累加器(N为相位累加器的位数),若频率控制字为M,则DDS系统输出信号的频率为fout=fclk/2N×M,而频率分辨率为△f=fclk/2N。为达到输出频率范围为5 MHz的要求,考虑到实际低通滤波器性能的限制,fclk为200 MHz,相位累加器的位数为32位。其中高10位用做ROM地址读波表(1个正弦波周期采样1 024个点),频率控制字也为32位,这样理论输出频率满足要求。
4 系统硬件设计
4.1 AGC电路
输入信号经高速A/D采样,信号幅度必须满足A/D的采样范围,最高为2-3V,因此该系统设计应加AGC电路。AGC电路采用AD603型线性增益放大器。图3为AGC电路。
4.2 A/D转换电路
ADS2806是一款12位A/D转换器,其特点为:无杂散信号动态范围(SFDR)为73 dB;信噪比(SNR)为66 dB;具有内部和外部参考时钟;采样速率为32 MS/s。图4为ADS2806的电路。为使A/D转换更稳定,在A/D转换器的电源引脚上增加滤波电容,抑制电源噪声。该电路结构简单,在时钟CLK的驱动下,数据端口实时输出数据,供FPGA读取。