·上一文章:基于FPGA的高速时钟数据恢复电路的实现
·下一文章:选择合适的FPGA千兆位收发器至关重要
其中,x中的各元素为对应的隶属函数,及模糊自己的赋值。同理可得其他15个样本,并将它们依次送入神经网络训练,当训练结束后,神经网络已经记忆了模糊控制规则,使用时具有联想记忆功能。如图表2所示,为每一个输入参量的模糊量。
根据模糊规则,可得到神经网络的训练样本,本次训练假设目标误差为0.001,训练步数为1000次,仿真结果如图5所示,可以看出,在训练到202次后目标误差达到要求。
3 总结
本系统采用了ARM与FPGA的双核处理器,与现在常用的PLC控制相比,大幅提高了系统功能及运算速度,采用FPGA的可重构计算技术,可实现动态系统的更新与升级,及远程系统的更新与维护。