1 OFDM中的符号定时同步算法
对于定时同步算法的研究,总体上可以分为两类:第一类是依靠OFDM固有的结构,如利用OFDM符号周期性前缀CP的方法,这通常被称作循环前缀同步方法;第二类是利用OFDM中插入导频或者训练符号的方法。在两类同步方法中,第一类方法中最具代表性的是Beek提出的最大似然估计法,其优点是不需要额外的开销,可以提高通信的效率,但其缺点是估计的时间较长,而且对频偏和噪声比较敏感;第二类方法中最具代表性的是Schmidl和Cox提出的利用PN序列相关性的SCA算法,这一种算法受频偏的影响较小,而且估计的时间相对比较短,非常适合用于突发通信系统。
2 适合802.16d的定时同步算法
IEEE 802.16d定义了一组特殊的训练符号,以用于同步和信道估计。这组特殊的训练符号包括短训练序列和长训练序列两部分,其中短训练序列包括4个重复的64点数据加上循环前缀(CP);长训练序列包括两个重复的128点数据加上循环前缀。在发射端,若干OFDM符号再加上短训练序列和长训练序列,所构成的帧头经过发送滤波器和A/D转换,再通过上变频后,即可发送到信道中。而在接收端,则利用帧头的训练序列来进行同步。为了使定时同步不受频偏的影响,同时可以在较短时间内完成,本文采用SCA算法。该算法又可细分为延时自相关算法和本地序列互相关算法两类。
2.1 延时自相关法
通常选用短训练序列来进行定时同步。假设接收到的基带数字序列为rn,n是该序列的序号,然后将接收序列经过两个滑动窗口R和P,其中R是接收信号和接收信号延时的互相关系数,P是互相关系数窗口期间接收信号的能量,此窗口的值可用于判决的归一化,它和接收功率的绝对值是独立的,其公式如下:
式中,N为窗口长度,N=64,即短训练序列的周期,d在窗内滑动时,可同时计算M(n)的值。当没有包含前导字结构的信号出现时,得到的M(n)值通常非常小(远小于1),而当有前导字结构的信号出现时,相应的M(n)值迅速升高,并将出现一个台阶,对应的峰值接近于1。由于M(n)值升高需要一个时间范围,因此该算法并不能精确定时,只适合粗略的检测帧是否到达。图1所示的虚线即表示信号出现时M(n)曲线的变化情况。