·上一文章:基于FPGA的高速数字相关器设计
·下一文章:基于对EPCS在线编程的FPGA可重构方法
3 算法改进
针对上述算法的不足,可对其加以改进,以保证同时具有良好的性能和硬件实现的可行性。改进算法是将两种算法结合起来进行联合估计,首先确定一个帧到达的大致平台,再在这个平台内找到互相关峰值,如果各个峰值间隔相等,那么可根据最后一个峰值来判断下一个符号的开始。这种联合估计的办法在软件仿真时具有良好的性能,但若要在硬件上实现则比较困难。因为在延时自相关算法中,计算M(n)的值虽然可采用迭代算法,每次计算只需1次复数运算和若干加法运算;但在自相关计算中,假设接收信号被定点化为16位整数,那么计算一次自相关的值需要16位数据的64次复数乘法,显然,所需要的硬件资源开销非常大,而且会影响系统的运行速度。这在硬件上,因资源消耗太大而无法实现。为了兼顾算法的估计精度和实现的复杂性,有必要将算法做进一步改进。即对接收数据进行二阶量化以得到d[n]=Q[r(n)],其中Q表示复数量化器,见下式:
利用这种改进的自相关算法和延时自相关算法进行联合估计的仿真曲线如图2所示。
将图1和图2进行对比可知,这种对接收数据二阶量化的方法会损耗算法的性能,但是,由于帧的大致位置已被限制在一定范围之内,因此,只需根据峰值就可以确定下一个OFDM符号的准确位置。这种方法既能保证估计精度,又能满足硬件资源利用率的要求。