对于频率f3=1 020 Hz信号分量,由于其频率较高,无需1 000个数据全部参加运算,因此首先通过一个数据选通步骤,只选取其中的125个点送入高通滤波器H2,可以得到纯的单频f3信号。而对于频率f1=90 Hz,f2=150 Hz两个信号分量,其频率较低,必须首先经过8倍抽取,降低采样率,才能减轻对后续滤波器设计的要求。因此8倍抽取后,数据的长度为125点,再分别经过低通H5和高通H4得到对应的频率f1=90 Hz,f2=150 Hz两个分量信号。
这里有几个问题需要说明。由于是对正弦信号进行采样,从时域进行幅度估计,首先要解决的是幅度估计精度的问题。因为采样周期与信号周期不一定满足整数倍关系,也就是说正弦信号采样后的各周期的最大值点不一定对应的就是正弦信号的最大值点,假定采样信号的最大值点与实际信号最大值之差在△d以内,则采样率最小值由下式决定:
从式(2)可以看出:△d一定时,信号的频率f0与采样率最小值成正比关系,或者说,提高信号的采样率,可以降低信号幅度估计精度。因此本文中将所有信号进行了2倍插值。
从图2还可以看出:
(1)信号经过滤波后再进行8倍抽取,这种算法意味着数据1 000个点全部参加滤波运算,然而其中输出值只利用了其中1/8。显然这种方式是浪费了运算时间,因此本文采用多相结构,提高运算速度。而图1中的三倍抽取也可以用多相结构实现。
(2)进行处理的数据均为125点,输出数据均为250点,因此这些数据可以公用存储空间,滤波器H6,H7和H8结构是一样的,因此可以用一个存储空间存储滤波器系数。
(3)信号是经过若干个滤波器进行分别处理的,因此信号的幅度还受到滤波器的影响。在实际工作之前,还需要进行定标处理。定标方法是通过给定信号源,分别测定每路信号的衰减程度。
ILS基带信号处理板如图3所示,其中标注1的是信号处理板,标注2的是信号源模块,标注3的是电源模块。每批次数据的运算速度为528 ms,基本满足实际需要。
图4给出了各频点上幅度估计误差与频率的关系。导致误差随频率变化的原因主要由滤波器的特性,以及采样率与信号频率之间的比值关系决定。其中滤波器特性的影响主要是影响误差随频率的慢变成分,而信号频率与采样率关系的变化则会导致误差随频率的快变。从图4可以看出,对于低频分量,估计误差可以控制在2%以内,而高频分量的估计误差则更小。
4 结语
仪表着陆系统是国际目前通用的飞机着陆设备。常规的ILS机载接收机基带信号处理部分采用模拟电路实现,测量精度低,电路实现复杂。本文基于DSP器件,基带信号处理部分全部在数字域进行,采用了定长的FIR滤波器和多速率信号处理算法,并针对硬件条件,对软件的处理速度和存储空间进行了优化。将该软件在DSP TMS320F2812系列开发板上进行了仿真,计算结果稳定、精确,总体性能优于常规ILS机载接收机基带信号处理模块。