引言
1956年,恩格伯格和乔治迪沃尔发明了第一个真正意义上的机器人,Unimate,可以执行存储在磁鼓存储器中的系统任务。到1961年,Unimate已经被成功应用于压铸件的运输和焊接,传统上这样的工作由工人担任——冒着因排出气体中毒或丧失肢体的风险。 Unimate是机器人用于危险任务场合的早期例子,如今,机器人系统已经被广泛应用于工业、农业、军事、航空航天、教育等各个领域。
机器人分类复杂且关键技术众多,从广义范畴上说,通常所说的机器人主要包括教育机器人、移动机器人、工业机械臂三大类。机械臂发展时间早,产业化程度高,相对已经有了成熟的行业解决方案,特别在汽车制造等领域,机械臂已被广泛的运用于产线装配。移动机器人构成复杂、应用灵活,目前商业化程度还不高,相对处于前沿研究的阶段,因此一直以来都是科学家和工程师们关注的重点。 本文将主要探讨移动机器人及无人驾驶车的研究和开发。
图1 机器人系统的分类
尽管移动机器人构成复杂且关键技术众多,但具有某些共同的构架和组成部分,是一个融合了众多机电系统和子系统的综合体系,并通过这些组成部分与子系统的有机结合协调工作,虽然部分子系统已有现成的软硬件工具和解决方案,但如何快速地把各子系统集成在一起、进行早期的整体功能性验证,就成了决定机器人设计成败的关键性环节。
图形化系统设计——机器人设计的前沿方法
在Google X PRIZE机构、FIRST组织(科学技术的启示与认知组织)、RoboCup以及美国国防高级研究计划局(DARPA)之间展开的竞争推进了机器人学领域的创新。富有创新思维的开发者们将机器人学的前沿方法推进到了图形化系统设计。在LabVIEW图形化编程平台下,机器人学的领域专家能够对复杂的机器人方案进行快速的原型设计。这些创新工作者能够不用关心底层的实现细节,可以将注意力集中到解决手上的工程问题中去。
机器人设计通常包含以下部分的工作内容,如图2所示:
感知系统- 连接到陀螺仪、CCD、光电、超声等传感器,获取并处理信息决策规划- 相当于机器人的‘大脑’,根据算法进行控制决策,完成管理协调、信息处理、运动规划等任务
执行控制- 根据具体的作业指令,通过驱动控制器、编码器和电机完成机器人的伺服控制与运动执行
网络通讯与控制- 机器人各子系统间的通讯网络,完成分布式控制与实时控制
图2 移动机器人的设计平台
过去,由于在每个领域中必须使用各自的传统工具,其中涉及的知识具有较大的纵向深度,机械工程师、电气工程师以及程序员团队都各自领导机器人学的开发。LabVIEW和NI硬件提供了一个独特的、功能多样的平台,它提供了一套标准的可供所有机器人设计人员使用的工具,从而使机器人开发得到了统一。
来自弗吉尼亚理工大学机器人学与机械实验室(RoMeLa)的工科学生,在Dennis Hong教授的领导下正在进行智能动态拟人机器人(DARwin)的双足类人机器人的开发和研究,目的是对假肢进行研究和开发。DARwin使用NI LabVIEW图形化系统设计平台,能够实现全范围运动,并且能够准确地模拟人类运动。学生使用LabVIEW分析动态双足运动、设计并开发机器人控制系统的原型。如果开发的原型能够令人满意地工作,他们就将控制算法部署到运行LabVIEW实时模块的PC/104单板计算机上。