其中,λ是波长,K'是和目标后向散射系数有关的常数,Ts是合成孔径时间。
2 单通道SAR数据抽取为两通道SAR数据
合成孔径雷达照射全场景时(条带式工作),方位向相干积累脉冲个数需满足
其中,Nazi为方位向相干积累脉冲个数,Ls为合成孔径长度,l为场景沿航迹向长度,va是载机飞行速度,prf是脉冲重复频率。当方位向相干脉冲积累个数较多,使回波数据在方位向有冗余时,可对方位向数据进行抽取,即重频需要满足
其中,一般n≥12为正整数(n的取值决定可抽取多少路数据),Bd=2va/D(D为天线方位向孔径大小)为地杂波谱宽。经过抽取得到的n路数据其脉冲重复频率是未抽取前的1/n。每路数据各自包含非重复的相等的相干积累脉冲个数,且各路之间间隔相等的脉冲个数。另外,考虑到抽取后数据的多普勒模糊和距离模糊,prf需要满足
其中,vr为目标径向速度,W为天线高低向的孔径长度,Rs为场景中心斜距,β为雷达下视角。式(9)与式(8)联合可得
理论上,prf只要能满足式(10)的要求,就可以对回波数据在方位向进行多抽1(n路数据)而成像。理想情况下,在雷达平台没有运动误差、地面场景较平坦,即杂波起伏不大时,对抽取后的数据补偿后再进行DPCA处理,就可以完成地面低速运动目标的检测。文中方法的仿真实验结果证明了这一点。其中,动目标检测性能主要由抽取后的数据之间的相关性决定,相关性越高,检测性能越好。
2.1 单通道仿真回波数据抽取为两通道SAR数据
该方法把仿真得到的单通道原始回波数据近似为满足DPCA条件的两通道数据。由于该仿真数据的prf=6*Bd,其中Bd=2va/D(D为天线方位向孔径大小)为地杂波谱宽,故原始回波数据具有冗余信息。文中采取对原始回波数据进行2抽1,即利用原始回波数据在方位向的冗余性,抽取在奇数次序方位脉冲位置上的数据组成C1路信号,在偶数次序方位脉冲位置上的数据组成C2路信号。经过抽取得到的两路数据其脉冲重复频率是未抽取前的一半。这样,C1,C2两路信号近似为满足B=va/prf(B为等效的C1,C2两路通道的天线间距)条件的两通道数据,如图2所示。对两路数据非重叠部分舍弃,重叠部分单独成像,得到两幅复SAR图像,然后进行DPCA处理检测动目标。经过处理后,进一步提高了两幅复SAR图像的相关性。与文献[5]相比,文中方法是在方位向上每隔一个脉冲抽取数据,并且是直接对距离压缩前的回波数据抽取,两路数据间只相差一个脉冲,然后截取两路数据的重叠部分,故数据之间相关性较高。其中相关系数的计算如式(11)
其中,z1,z2为抽取后得到的两幅SAR图像,表示取共轭,E表示数学期望算子。
用该方法对仿真数据进行处理,其流程图,如图3所示。
2.2 实测单通道SAR数据近似为两通道SAR数据