·上一文章:基于混沌蚁群的神经网络速度辨识器研究
·下一文章:自循迹移动靶车控制系统设计
IIR数字滤波器在没计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,IIR数字滤波器线性差分方程:
Matlab环境下可视化得到滤波器对动态输入数据的实时滤波效果如图3所示。
2.3.2 基于短时谱估计的宽带噪音去除
由于语音信号的短时谱具有较强相关性,而噪声的前后相关性很弱,因此采用基于短时谱估计的方法从带噪语音中估计原始语音。而且人耳对于语音相位感受不敏感,可将估计得对象放在短时谱的幅度上。
2.3.3 谱相减法
谱相减法在无参考信号源的单话筒录音系统中是一个有效的方法。因为噪声是局部平稳的,可认为发语音强的噪声与发语音期间的噪声功率谱相同,因此利用语音前后的“寂静帧”来估计噪声。
谱相减法的原理框图及仿真结果如图4,图5所示,对语音信号加窗处理后,利用已知的噪声功率谱信息对信号进行除噪处理。
2.4 噪声对消法
噪声对消法是最基本的减谱算法,它的基本原理是从带噪语音中直接减去噪声。由于宽带噪声与语音信号在时域和频域上完全重叠,是比较难去除的。所以需要用到非线性处理,自适应滤波器不断地调节。
图6中一个声道采集带噪语音,另一个声道采集噪声。带噪语音序列S(n)与噪声序列d(n)经傅里叶变换得到频谱分量Sk(w)和Dk(w),噪声分量Dk(w)经过滤波后与带噪语音相减,再加上带噪语音的相位,经傅里叶反变换恢复为时域信号。在强噪音背景时,这种方法可以得到很好的消除噪音效果。
在实际中两个采集声道要保证一定隔离,以防止两个声道都采到带噪语音。为了使采集到的噪声更接近于带噪语音中的噪声,自适应滤波器可以很好地实现这一功能。
图7是运用噪声对消法得到的左声道的增强语音示例。