1系统平台整体设计方案
按照功能需求,硬件平台共可分为以下五个部分:数据采集站,传输基站,数据处理中心,远程监测站以及电磁阀控制站。图1为系统的硬件平台结构图。
系统中各部分的功能与工作流程如下:首先根据农田的管道分布情况,以及ZigBee无线节点的有效通信距离,将灌溉区分割为数块独立的灌溉控制单元,在每个单元中设有一个或数个传输基站和若干分布在农田不同位置的数据采集站,数据采集站通过与其连接的传感器采集土壤湿度参数,并将数据定时传送给传输基站;传输基站负责管理其管辖区域内的各个数据采集站,当数据处理中心询问数据时,传输基站将数据进行第一级融合后以Ad hoc的方式上传给数据处理中心;数据处理中心首先对接收到的数据进行聚类、存储并与其他的参数(如气象信息、水文地理信息、专家系统以及作物的特征信息等)按照一定算法实现第二级融合,做出初步判决,并将判决结果连同部分关键数据通过光纤以太网或者GPRS模块传送给远程监测站,请求经验丰富的工作人员做最后的判决,并将判决信息返回给数据处理中心,数据处理中心根据判决结果向电磁阀控制端发送控制指令;电磁阀控制端根据接收到的控制指令执行灌溉控制,到此,一个完整的系统工作过程结束。
2 系统硬件部分设计
本系统硬件平台的核心部分为数据处理中心,它负责管理整个ZigBee无线网络,实现整个网络的数据汇集、存储、融合以及数据的远端传输等。
2.1 ZigBee模块设计
ZigBee无线通信芯片选用的是TI公司的CC2430F128,它是全球首个真正意义上的系统级ZigBee芯片,其射频收发器工作在2.4 GHz ISM(IndustryScience MeDICal)频段,采用低电压(2.0~3.6 V)供电,接收发射电流为27 mA,接收信号灵敏度高达-92 dBm、最大发射功率为+O.6 dBm、最大传送速率为250 Kb/s,硬件支持CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)和RSSI(Received Signal Strength IndICator)功能。由于其属于高频器件,因此本系统将其进行了模块化设计,其原理图如图2所示。
在射频电路部分使用了一个非平衡天线,连接非平衡变压器可使天线性能更好。电路中的非平衡变压器由电容C2和电感L1,L2,L3以及微波传输线组成,整个结构满足RF输入/输出匹配电阻(50Ω)的要求。其内部的T/R交换电路完成LNA和PA之间的交换。R221和R261为偏置电阻,电阻R221主要用来为32MHz的晶振提供一个合适的工作电流。32MHz的石英谐振器(X1)和2个电容(C191和C211)构成高速时钟电路。32.768kHz的石英晶体(X2)与2个电容(C441和C431)构成低速时钟电路。在模块的外围,采用MAX706S看门狗芯片,在程序出现异常时为其提供可靠复位。同时S3C2440的串口1与CC2430模块的串口0相连,为S3C2440提供了访问ZigBee无线网络数据的接口。