现代汽车天线的发展前景向人们提出了一些更难应对的技术要求和约束条件。其中,最重要也是最富挑战性的要求是缩小天线的尺寸;其次是连接电缆长 (尤其是在SUV (Sport Utility VehICle) 运动型休旅车型中)。其它的要求还包括多天线设计,以及面向不同天线类型 (安装在档风玻璃、车顶或前保险杠上的天线) 的多样化设计问题。
天线的物理知识
传统的AM/FM频率范围已扩展,AM广播目前已延展到30 MHz,以使汽车无线电能够接收DRM (世界数字广播) 信号。而FM广播的频率范围则起始于78 MHz的日本频带,终止于最大频率为240 MHz 的band III,使用该频带可在欧洲接收DAB信号。
由于AM广播采用垂直极化的电波来发送信号,因此汽车天线也应按垂直方向极化。在FM广播中,发射信号大多数按水平方向极化;这与AM的接收要求似乎有冲突。
好在汽车的金属车体能改变电磁场,因而对FM广播也可使用AM广播所要求的垂直天线。图1所示为车体对电磁场的影响;可以看出车体水平面处(例如:车顶或后备箱)只存在垂直方向的电磁场分量。水平分量向垂直方向弯曲了。
此外,车窗形成的开口导致车体金属表面不连续,使场强增大。而这种不连续的表面结构决定了汽车天线最合适的安装位置。车顶中间通常不是安装天线的最佳位置。
由于车体物理构造对电磁场有加强效应,采用小型偶极天线 (天线形式中的一种) 对接收AM和FM广播是可行的。
出于设计方面的考虑,现在的车顶天线长度都比信号波长短很多。这样,天线阻抗就非常小,并有较大的容抗分量。如果将这样的天线接到电缆上,那么,即使采用的是专用的低容抗 (如20 ?C 30 pF/米) 电缆,最终的电缆容抗也会轻易达到150 pF。在这种情况下,电缆容抗就扮演了电容分压器的角色,从而降低汽车无线电调谐器输入端处的有效信号强度。
在这种情况下,最好加一个天线放大器,尤其是在天线和电缆间加一个针对AM信号的隔离放大器。爱特梅尔的单片集成天线放大器ATR4251在AM频带下有很低的输入容抗 (2.45 pF),其AM隔离放大器输出端的阻抗也非常低 (5欧姆),因而有利于驱动电缆容抗。较之于直接与电缆连接的无源天线,带AM隔离放大器的方案可使增益提高35 dB。当然,具体提升量取决于天线和电缆阻抗。
由于距发射站的距离不同,以及多路径干扰引起的屏蔽效应,接收环境的差异可能会很大。天线LNA (低噪声放大器) 必须调配到能接收完整的AM或FM广播,必须具有优良的大信号表现,二阶交调截取点 (IP2) 和三阶交调截取点 (IP3) 非常高。
此外,对非常大的信号,必须要有自动增益控制 (AGC) 来抑制信号峰值,并在汽车无线电调谐器输入端维持恒定的最大电平。另一方面,天线放大器还必须具有很好的小信号性能参数,尤其噪声指数和稳定性因子 (k)。
ATR4251的基本原理
ATR4251是单片集成的AM/FM天线匹配放大器电路。由于工作频率以及频带要求不同,对AM和FM频带可以分别使用两个独立的放大器。这样,可以分别使用独立的天线,但是两个放大器也可以连接到单个天线上 (如车顶天线)。