摘要:阐述了小卫星的发展背景、工作模式及技术上的优点,介绍了小卫星采用的射频前端系统结构。为了系统的合理设计,以满足星问通信的要求,对系统中低噪放电路、锁相环电路、自动增益控制电路的工作原理和重要指标进行了分析。采用ADS,ADIsimPLL软件仿真,得出适合要求的电路结构。最终制作出系统电路板并调试实现预期指标。
关键词:小卫星;射频前端;低噪放;锁相环;自动增益控制
引言
在20世纪90年代小卫星概念提出以前,应用卫星技术主要靠单颗卫星来发挥作用,多种科研任务集中在一颗卫星上,甚至有些任务是相互冲突的,这不仅延长了研制周期,也增大了系统的风险。而利用小卫星编队组网运行,可以实现单颗卫星难以实现的功能,并且方便添加新的系统和技术,从而使那些需要较长研制周期的仪器可随时添加到虚拟卫星中去,另外小卫星具有单星测控能力,使系统测控可靠性进一步加强。在技术上,小卫星有功能模块集成化、功耗低、体积小和重量轻等优点。小卫星的这些优点吸引了各航天大国对其开展研究,我国也投入了大量人力物力开展了卫星编队的研制。本文针对某项目的具体要求,设计了适合小卫星通信系统的射频前端,仿真分析了其关键电路,并通过实物验证了方案设计的可行性,实验结果表明设计合理,实现了预期目标。
1 系统结构
超外差结构是射频前端应用中最多的一种结构,其发射和接收方案都比较成熟。系统结构框图如图1所示。
在接收电路中将从天线接收来的微弱信号放大,经过下变频得到中频信号,为了放大器的稳定和避免自激,在一个频带内的放大器其增益一般不超过50~60 dB,通过选择合适的中频频点和滤波器,可以实现很好的选择性和灵敏度。发射电路中将中频信号上变频得到射频信号,经过滤波和功率放大输出给天线发射出去。
系统中发射电路和接收电路均采用二次变频。飞行过程中小卫星与主星之间距离的变化会引起接收电路输入端信号的功率变化,变化范围可达几十分贝,在接收电路中设置自动增益控制电路,使接收信号功率在一定范围内变化时输出信号功率变化很小。系统中重要组成部分有低噪放电路、锁相环电路、自动增益控制电路等。
系统中接收电路的主要指标如下:
(1)接收信号为2.3 GHz,功率为-120 dBm;输出信号为30 MHz,功率大于等于0 dBm。
(2)噪声系数小于等于2,输出信号功率信噪比大于等于13 dB。
(3)接收信号在-120~-90 dBm变化时,输出信号变化小于6 dBm。
(4)相位噪声小于-80 dBc/Hz/10 kHz。
2 系统组成部分
2.1 低噪放电路
低噪声放大器在接收电路中处于前端,接收来自天线的微弱信号,其性能的好坏直接影响着整机的性能,尤其是接收灵敏度和整机噪声的好坏。低噪声放大器的主要指标有噪声系数、功率增益、动态范围、稳定性。