要开始测试,请设置其中一个信号发生器产生相位偏移等于0°的信号,并设置另一个信号发生器,使示波器显示两个相差180°的波形。这两个波形的幅度彼此接近,频率完全相同,使用示波器的数学功能(通道A + 通道B)将得到一条基本上为0 V的平坦直线。注意,由于发生器本身存在误差,信号发生器不一定需要设置完全相同的幅度。这里的任何差异都是由信号发生器本身相对于频率的参考增益和相位误差引起的,因此,必须使用示波器将相位或幅度误差调零,从而尽可能降低测量误差。接下来,您可以让一个信号发生器在0°相位偏移下扫描+30°至-30°,同时另一个信号发生器的相位保持不变。
您需要选择某一基频功率,然后在整个测试过程中维持该功率不变。本次试验中,我们将各信号发生器的基频信号功率设置为-6 dBFS。设置基频信号的功率后,应利用示波器的数学功能检查两个信号的相位和幅度。数学功能的峰峰值电平应尽可能接近0。一旦测量系统处于平衡状态,就可以使用该点作为0°错相参考起始点。
测试应包括保存+30°至-30°范围(相对于信号相差180°时的参考点)内每一度错相的ADC二次和三次谐波性能。当两个信号的相位差偏离180°时,载波信号的功率会像前面的图3所示一样下降。因此,需要利用两个信号发生器的输出幅度,使基频信号的功率水平保持不变。使用示波器来确认信号幅度,在时域中显示经过任何调整之后的信号。一旦采集到30个数据点(1°偏移至30°偏移),就可以设置信号发生器输出电平,使其信号再次相差180°,并且重新调整幅度,确保不发生任何未知的幅度或相位漂移。对于从0°参考点开始的-1°至-30°偏移,重复上述程序。
在转换器或其目标应用的有用带宽内执行测量。本次试验中,我们使用了2 MHz、70 MHz、170 MHz和300 MHz的输入频率,同时调整了分路器前的滤波器带宽,以支持测试信号的适当带宽。
3 测试结果
图4显示了从2 MHz到300 MHz输入频率的归一化数据集合。低频对相位不平衡的耐受能力高于高频。此图显示谐波功率随着频率而提高。这些测量数据显示的相对测量结果,目的不在于说明ADC的真实性能,而是让您了解模拟输入信号相位不平衡时的变化趋势。
图4 低频时的二次谐波功率低于高频时的二次谐波功率
由于正向和负向的相位变化产生的结果相似,因此对正偏移和负偏移产生的谐波进行平均,并且归一化到零点。通过试验可以看出,随着频率升高,相位对器件的二次谐波性能有直接影响。
图5以地形图形式显示了相位偏差、模拟输入频率和二次谐波性能之间的关系。随着相位偏差增大,所有频率的输入信号(dB)都下降,表现为输入信号的二次谐波幅度提高。
图5 二次谐波功率与频率和相位偏差的关系