1 bit的最优判决融合准则是Chair-Varneshney准则。该准则基于对数似然比准则,通过比较假设下的条件似然比与贝叶斯最优门限,做出判决。条件似然比可通过各节点的虚警概率和检测概率计算得到,但需要知道主用户先验概率。文献[9]提出改进的Chair-Varshney融合方法,在似然比检测基础上充分利用信道占用的统计特性,并考虑各个次用户检测机制差异性、决策时间差以及融合滞后时间,因此适用于单或多bit的同步感知以及异步感知场景。
近期研究软融合算法的文献还有很多:如基于D-S证据理论的融合算法,综合考虑了节点的检测结果和置信度,且融合中心不需要节点先验信息,因此有很强实用性。Jun Ma等人提出的2 bit量化决策加权软融合算法,通过设置3个检测门限将能量分为4个区域,从而使检测结果最终以2 bit形式传送给中心进行加权求和并最终判决,该算法实现了协作开销和检测性能之间的合理折中。文献[10]将各节点的相关性考虑进去,提出了一种基于偏移准则的线性二次的次最佳融合方案。模糊综合评估协作感知方案则是用模糊综合评估方法得到各个次用户信任度再融合,从而提高决策可靠性。此外,根据历史判决数据的可靠性进行动态加权的感知算法,也能有效地提高检测性能。
综上所述,可将主要的信息融合算法归纳如表3所示。
2.3 有待解决的问题
(1) 协作感知的性能与协作用户数量、各用户门限值的确定及位置分布情况等因素密切相关。因而如何选取这些协作感知参数以获得最佳的检测性能,是协作感知研究的重要内容。此外,协作感知属于媒体访问控制(MAC)层的感知技术,所以还涉及到跨层设计方面的研究。
(2) 信息融合算法会直接影响协作增益和系统开销。一方面,决策融合虽然简单容易实现,但是其协作增益非常有限,当信道不均匀或者存在恶意用户时,协作性能将急剧恶化;另一方面数据融合协作增益大,但是对控制信道的带宽需求较大。如何在协作性能和系统开销二者之间寻找合理折中是协作感知研究的热点。
(3) 恶意攻击或突发故障是协作感知中不容忽视的安全问题。为此,文献[11]提出了一种应对存在恶意或自私节点场景的协作感知安全方案,以提高网络安全性。文献[12]提出一种加权序贯检测方案(WSPRT),采用双门限值检测,并通过一定规则动态更新每个用户的置信度权值,有效降低了恶意节点对最终判决的影响。
(4) 现在的研究大多是集中在单个感知用户网络参与协作的情形,基于网络层的多感知用户网络间的协作也可能是未来研究的一个方向。
3 感知机制的优化
GhasEMI和Hyoil Kim等人最先提出了感知机制的优化问题,主要关注感知模式的选择和感知参数的优化。CR网络下,次用户的伺机动态接入频谱过程通常可看成两种感知场景:信道搜索和信道监视。信道搜索是指次用户需要搜索各个信道,寻找可用于传输的空闲频谱。信道监视则是指次用户必须周期性地检测主用户信号,以避免对重新出现的主用户造成干扰。检测周期、检测时间和搜索时间的参数如何选取,以及采用何种感知模式和信道搜索方式,才能使感知效果最优,这都是感知机制的优化问题。
频谱感知模式通常分为被动感知和主动感知。被动感知模式下,次用户只有在需要进行数据传输时才启动感知,通常只能使用一个空闲信道进行传输,并周期性监测该信道。而主动感知模式下,不管是否有数据传输需要,次用户都周期性地检测各个信道。两种感知模式都要避免对重新出现的主用户造成干扰,因此一旦发现当前信道不可用时,需立即启动搜索,直到检测到某个空闲信道后停止搜索并开始新的传输。相比而言,主动感知方式需要检测多个子信道,能量和时间开销比被动感知方式有所增大,但它可以提高传输速率,并且减小认知用户被迫进行信道搜索而导致服务质量(QoS)降低的概率,同时还可以积累大量频谱信息,在重新进行信道搜索时优化搜索方式以提高信道切换能力。
下步的研究方向主要包括:信道占用模型可适当扩展更一般的情况;分布式协作感知机制的优化问题;基于循环平稳特征检测等方法下的感知机制优化;认知用户之间的干扰可能对感知机制优化的影响;不同的信道条件下,非固定检测周期和搜索次序的感知机制优化;综合考虑最小化主用户干扰、最大化感知性能、最优化QoS等多种优化目标;综合考虑应用层需求、物理层算法和链路层协作与控制等跨层设计优化问题。
4 结束语
文章主要从本地感知、协作感知以及感知机制的优化3个方面,对认知无线电频谱感知技术的研究和发展状况进行了综述,并对下一步有待解决的难点问题进行了讨论。尽管还面临诸多的技术挑战,但随着研究不断深入,相信在不久的将来,认知无线电技术必将日趋成熟,为无线通信带来新的发展契机和动力。