PAL制式视频显示分为奇场和偶场,因此在奇场时,SRAM的读地址应该满足:第n行地址范围为320×(n-1)~319+320×(n-1)(n=1,2……128);偶场时,RAM的读地址应该满足:第n行地址范围320×n~319+320×n(n=1,2……128),其读使能及读地址的FPGA主要代码如下:
//////// sram的读标志位有2种状态:(1)奇场数据有效时////用写sram的下降沿‘与’fifo半行标志位。(2)奇场数据无效时用 fifo半行标志位产生上升沿
always @(posedge SRAM_CLK)
if (!rst_n)
ui_sram_read_flag <= 0;
else begin
if ((FVAL_d | ui_sram_write_5d)& Hsync_odd )
ui_sram_read_flag <= ui_sram_write_fallage &
fifo_sram_adv7123_prom_empty_d;
else
ui_sram_read_flag<=fifo_sram_adv7123_prom_empty_riseage;
end
//// SRAM读地址切换
always @(posedge SRAM_CLK)
if (!rst_n | Hsync_odd_riseage)
ui_sram_read_add <= 0;//奇场起始地址
else if (Hsync_odd_fallage)
ui_sram_read_add <= 320;//偶场起始地址
else if (ui_sram_read_fallage)
ui_sram_read_add <= ui_sram_read_add+320;
else if (ui_sram_read)
ui_sram_read_add <= ui_sram_read_add+1;
最后通过下面的赋值给出了SRAM芯片的读写、片选及地址信号:
assign SRAM_read_write_en=~(ui_sram_write & Hsync_odd);
//SRAM读写使能
assign SRAM_CE=~(ui_sram_read | ui_sram_write);
//SSRAM片选
assign SRAM_ADD=(ui_sram_write)?ui_sram_write_add:
ui_sram_read_add;//SSRAM地址
2.2.4 灰度拉伸
将SRAM的读使能和读数据送入灰度拉伸模块作为数据使能和输入数据。本方案中,图像灰度线性拉伸算法表达式为:
式(1)中:Y是拉伸后输出图像灰度值;X是SRAM中读出的数据,为原始图像16 bit二进制数灰度值;Xmin是输入图像数据直方图统计最小灰度值;Xmax是输入图像数据直方图统计最大灰度值。为保证精度,实际应用中将上述公式进行简单变换,可以记为:
Q值在上帧结束前直方图统计模块已经得到,这样拉伸运算只需1次减法和乘法运算,得到积左移14 bit后,截取低10 bit就得到拉伸后的灰度值。需要注意的是,截取前要判定乘法是否溢出,如果溢出,结果置为最大灰度值210。本方案中主要通过调用乘法器IP核来完成乘法运算,不同硬件的乘法器延迟时间不同,所以必须要将输入数据使能信号作相应延迟后,成为输出使能与乘法器输出数据同步[3]。经过灰度拉伸后的图像数据送入FIFO_OUT模块用于图像显示,其中,灰度拉伸模块的输出使能及输出数据作为FIFO_OUT模块的输入使能和输入数据。
该图像处理方案以FPGA 作为核心控制芯片,采用单片SRAM实现了图像预处理、数据缓存、图像存储及显示的功能。随着FPGA 性能的不断提高及其灵活的可编程性,设计者可以进一步在FPGA内部实现各种其他的图像处理算法。这样,直接采用FPGA和单片SRAM的方案不但减小了PCB 尺寸,降低了元件数量及PCB布线的难度,也降低了元件相互连线带来的信号失真,从而增加了可靠性和稳定性。本方案已成功应用在本单位的图像采集和处理产品中。
参考文献
[1] 田耘,胡彬,徐文波,等.Xilinx ISE Design Suite 10.x FPGA开发指南[M].北京:人民邮电出版社,2008.
[2] Xilinx Corporation.fifo_generator_ds317.http://www.xilinx.com,2005.
[3] Xilinx Corporation.Muli_gen_ds255.http://www.xilinx.com,2005.