在工业湿法的合成革生产中,二甲基甲酰胺(DMF)作为洗涤固化剂,有着重要的作用。DMF具有强污染性,若流失到大气、水或土壤中会给环境带来严重污染,因此现今生产线上流失的DMF都需要做回收处理。
DMF的回收采用多塔精馏工艺,属于典型的化工精馏的过程,包含一、二级浓缩塔、精馏塔、蒸发罐等。过程有原料预热、负压浓缩、精馏、脱酸等工艺过程。在实际操作中,精馏塔液位波动很快,影响因素很复杂,受塔操作压力、塔釜热量、塔顶回流量及进出料量的影响,工艺参数关联度高,非线性程度高,难以建立被控对象的精确数学模型,常规的PID控制难以做到实时有效的控制。针对这些特点大部分企业暂时只能够运用手动控制输出的方式来解决控制不稳定的问题。
近年来,模糊控制技术飞速发展,越来越多地应用在工业控制领域。由于模糊控制技术不依赖对象精确的数学模型,具有较强的鲁棒性,即使控制对象没有准确的数学模型,也可以依照经验对其进行稳定控制。在本系统实际精馏塔的液位控制中,存在不同程度的超调和震荡现象,而且存在调节时间长的问题。综合被控对象的非线性、高阶次、大滞后、数学模型难以确定等特点,因此适宜采用模糊控制。然而,模糊控制自身也具有一定的局限性,例如稳态性能较差等。为了解决这些问题,就需要模糊控制器具有自学习、自调整的能力。
本文设计了一种fuzzy-PID复合控制器,利用STEP7将模糊控制与PID算法相结合,提高了对非线性时滞系统的控制能力。
1 系统构成
DMF回收智能控制系统硬件主要由SIMENSE PLC-300、工控机、液位传感器等部件组成,软件编写采用STEP7,上位机软件采用组态王软件。
如图1所示,系统结构分为中央处理单元(CPU)、功能模块(FM)、网络通信模块(CP)、信号模块(SM)几个部分。其中CP343为网络通信模块,负责与上位机进行通信;SM334为模拟量输入/输出模块,负责采集现场的信号或给出输出信号;SM321为数字量输入模块,负责采集现场的数字量信号;FM355C为智能控制模块,本身具有执行传统PID算法的功能,可以实现对被控对象的PID控制。
精馏塔的液位通过液位传感器采集后转换成4 mA~20 mA的电流信号送入PLC的模拟量模块SM334中,在PLC中计算偏差液位E和偏差变化率EC并传入数据块,通过模糊控制器计算出PID控制器各参数的迁移量,在PLC数据块中形成新的PID参数,最后通过传统PID算法计算并输出4 mA~20 mA信号来控制气动阀,从而达到调节液位的效果。
2 模糊控制器的设计
2.1 模糊化
模糊PID参数自调整模糊控制器由3个子模糊控制器共同构成,每个子模糊控制器的输入变量为液位误差E和误差变化EC,输出变量分别为△Kp、△Ki、△Kd。
基于对现场数据的分析以及液位的控制经验,E和EC的论域设计为[-6,+6],输出变量△Kp、△Ki、△Kd的论域分别为[-10,+10]、[-10,+10]、[-2,+2]。模糊输入输出的量化等级为7级,定义模糊集为[NB,NM,NS,O,PS,PM,PB],含义依次表示负大、负中、负小、零、正小、正中、正大[1-3]。采用三角形函数作为隶属度函数以确定模糊语言变量的隶属度,可分别得到各模糊变量的隶属度赋值表。由此可计算出精确量E和EC并得出相应的模糊语言变量的输入。
2.2 建立模糊控制规则
根据数据分析及现场操作人员手动调节参数的经验,各环节的控制规则如下。
(1)比例环节的作用是及时成比例地反映控制系统的偏差信号,并即刻产生控制作用以减少偏差。因此,当偏差较大时,为提高响应速度,Kp应取较大值;当偏差较小接近稳态时,为防止超调过大引起振荡,Kp应取较小值。△Kp的模糊规则库如表1所示。
(2)积分环节的作用是消除静态误差,通过对误差进行积分,对系统控制有一定的滞后作用。因此,当偏差较大时,Ki应该取较小值,避免造成系统超调量过大或系统振荡。当误差较小接近稳态时,Ki应适量加大,以消除系统的稳态误差,提高控制精度。△Ki的模糊规则库如表2所示。
(3)对有较大惯性和滞后的被控对象,微分环节可以预测误差变化的趋势。它能在偏差信号值变得太大之前加入有效的修正信号,加快系统响应速度,减少调节时间。由于微分环节对于干扰信号较为敏感,因此Kd的取值应综合考虑系统的响应速度和抗干扰能力,以提高系统的稳定性。本系统中,在误差较大时应取较大的Kd值,控制中期或接近稳态时,Kd值应取较小值,从而减弱过程的控制作用,增加对扰动的抑制能力。△Kd的模糊规则库如表3所示。
本系统中控制规则采用Mamdani算法,即基于IF-THEN的产生式规则,其结构简单,易于修改。用一个由