图7 TLP250驱动IGBT
保护端为过压、过流保护输出端口,一旦过压、过流,保护模块将输出高电平并且保持,禁止TLP250输出脉冲,直到故障解除后复位。
本设计开关频率为10kHz,三极管BD237/238(NPN/PNP),VCBO=100V,集电极峰值电流ICm=6A(tP<5ms),完全可以达到要求。
R3、IGBT的门极之前,加一小电阻(一般为10~20Ω),用以改善IGBT的开关波形,降低高频噪声。DSP的PWM输出经过上述TLP250光耦电路后的波形输出见图8。
图8 Buck单元PWM经过光耦后的波形输出(×10)
可以看出,推挽后的电容C2为加速开通和关断作用;与C3并联稳压二极管产生恒定的5.1V反压,当PWM输出高电平,IGBT的CE两端电压差为8~9V,使IGBT导通;当PWM输出低电平,IGBT的E极的5.1V反压可以保证IGBT可靠关断。
② 三相逆变桥SPWM驱动的设计
TLP250光耦驱动能力比较大(Io=±1.5A)可以直接驱动中功率IGBT,本文已在上节作了详细说明,在此不再赘述,具体驱动电路如图9所示。
图9 TLP250光耦直接驱动IGBT
系统启动后,设置输出调制正弦波频率为50Hz(±0.01Hz),死区时间4.0μs时的SPWM经过74HC244N缓冲驱动后波形如图10所示,死区时间如图11所示,以上桥臂1(PWM1)和下桥臂4(PWM2)为例,上下对称,其中CH1通道观测PWM1,CH2通道观测PWM2。
图10 EVA事件管理器输出的SPWM波经过光耦驱动后的SPWM波形
由DSP的EVA事件管理器输出的SPWM波经过光耦驱动后的SPWM波形见图10。
IGBT逆变桥上下桥臂波经过光耦驱动后死区时间情况如图11所示。
图11 EVA事件管理器输出的SPWM波经过光耦驱动后死区时间情况
2 A/D转换采样电路的设计
本设计选用Agilent公司的HCNR200/201。线性光耦真正隔离的是电流,要想真正隔离电压,需要在输出和输出处增加运算放大器等辅助电路。
如图12所示,输入端电压为Vin,输出端电压为Vout,有:VOUT=K3(R2/R1)VIN,其中,K3=1+0.05。一般取R2=R1,达到只隔离,不放大的目的。
输入VIN=0~12V,输出等于输入,采用LM324运放集成芯片,电路如图12所示。
图12 线性光耦隔离电路
由于光耦会产生一些高频的噪声,通常在R2处并联电容,构成低通滤波器,取C=10pF,有微小相移,约1.5kHz—0.2°,可以忽略。电阻R1和R2采用精密电阻,以达到最好的线性关系1:1。
采样电阻分压后,通过高精度线性光耦隔离,采样信号Vout经过一级电压跟随器后,输入ADC,经ADC模块转换为数字量,进行PID运算处理后,输出给调节量。
3 过流、过压保护单元设计
① 过流保护单元设计
过流保护电路如图13所示。
图13 过流保护电路图
过流保护的整定值可以通过改变R8来调节,当IIN—IOUT的电流超过整定值,电路输出端送给处理器(DSP)或逻辑控制电路一个高电平信号(+5V),最终由控制回路调整主回路设置(如断电),从而实现过流保护。
② 过压保护单元设计
过压保护电路的基本原理和过流保护基本想同,唯一不同的是过压保护电路不需要电流互感器,将LM393第二引脚直接与分压采样电阻想连。这里不再赘述。
实验及结果分析
频率输出设定为50~100Hz时的测试结果如表1所示。
逆变输出接三相阻性负载。
过流保护测试:
设定输出门限直流电流为7.00A。保护电压电流分别如表2所示。
部分实验波形见图14和图15。
图14频率设定为50Hz时的逆变输出三相负载线电压波形
图15 频率设定为60Hz时的逆变输出三相负载线电压波形
① 实验结果表明,频率输出略有误差(+0.01Hz),但基本满足要求。输出频率的误差可能是由于DSP在进行浮点运算时,浮点比较没有绝对相等,只能无限逼近。
② 无源LC滤波只有一个中心频率,当输出频率改变时,中心频率不能跟随变化,使输出波形稍有畸变。
③ 在进行输出频率(60Hz)或者直流电压设定后运行时,可以看到,输出频率或者输出直流电压逐渐上升达到设定值,以减小启动时的冲击电流;当系统停止时,输出频率或者输出直流电压逐渐下降为0。
实验证明,设计方案可行,系统性能和各项指标基本满足设计要求。