首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
探索低成本的LED照明驱动方案
来源:本站整理  作者:佚名  2011-12-22 09:40:24



   将发光二极管(LED)用于建筑物及室内照明的下一代照明组件,发光能效比白炽灯高得多,不过,其必须以专用电子驱动电路,确保不遭受过大应力,从而使它们持续提供产品规格中所宣称的长寿命。针对此一技术前提,本文将探讨如何使用简单LED驱动电路来提供必要的可靠性,并将灯具成本降至最低。 

 
  LED特性加持 室内照明设计更有效率

  LED照明的特性已使室内照明设计人员可进一步设计出新的照明方案,举例来说,LED尺寸小,且可密集排列,使其能置于软性灯条内,或易于隐藏在橱柜及楼梯中,达成更多设计弹性。此外,LED的主要工作参数相对简单,只要保持电流恒定,并低于可承受的最大电流,进一步在设计参数范围内工作而不遭受过大应力,LED使用寿命将比白炽灯泡长一百倍,成为另一项关键优势。所以,若驱动电路符合LED规格,其光源输出将能维持恒定,基本上使用寿命可超过5万小时。 

  另一方面,建筑物及室内照明灯具的设计方针须针对全球普遍的规范,其灯具须以50或60Hz频率在85~265VAC的完整通用电压规格范围内工作。涵盖此通用电压要求的电源电路已完成设计,并在生产当中,未来可望以此设计为基础,进一步渗透计算机及手机市场。必须注意的是,这些电源设计系针对终端产品进行优化,但并不必然是LED驱动电路的最佳方案。 

  减轻设计负担 保持电流恒定方案崛起

  由于传统电源提供精确的电压输出及不同电流电平,故将一颗电阻与LED串行,就可限制电流。而此类设计的先决条件是明确知道LED(串)两端的电压,且此电压不会跟随LED温度变化而改变。但不利的是,LED正向电压通常会随着温度而变化,因此LED制造商须根据正向电压对其组件进行编码,使灯具制造商可构建在固定温度时与LED正向电压匹配的灯具设计。 

  在此设计考虑之下,不须经过LED编码的电路具有更强吸引力,因其可节省LED制造商的时间,且产制出的LED价格会更便宜。不仅如此,囿于安全性问题,LED正向电压还具有负温度系数(即温度升高时正向电压下降),可能导致电路过热而失控,故还须要求设计人员构建防护电路,又是一笔额外的成本。 

  因此,LED驱动电路的最佳方案是可监测电流并保持电流恒定的方案。此类电路不受LED正向电压影响,无须LED编码,且消除LED在正向电压负温度系数的影响。加上此类电路应用广泛,可以是复杂的开关稳压器或是带回馈回路的线性稳压器,而复杂的开关稳压器极适合高光输出应用,如以发光效能为主的街道照明。 

  由此可见,建筑物及室内照明灯具均适合采用简单、经济及强固的混合电路设计,虽然其效能要求可能不像复杂的开关稳压器高,但低成本和简单的设计架构使其成为极具吸引力的选择。 

  成本LED驱动电路 截波器/稳流器是关键

  接下来将针对室内照明的简单、低成本LED驱动电路做介绍,图1所示的电路由整流桥、截波器(Chopper)和简单的稳流器构成,全波桥由二极管D1、D2、D3和D4(1N4004)构成,为截波器电路注入讯号,开关Q2(NDD03N50Z)将立即导通电容C1(22μF)开始充电。 
 
图1 由整流桥、截波器和简单的稳流器构成的电路图

  而分压器电阻R1和R2分别为330(kΩ)和390千欧姆,当二极管D5(MMSZ5260BT1G)的阴极电压达到43.5伏特(V)时,齐纳(Zener)二极管即可导电并导通Q1(MPSA44)。当Q1被导通后,就会将Q2的闸极拉至低电平致其关闭,不过电路中须包含二极管D6(MMSZ15T1G),用于保护Q2的闸极。此时,电容C1两端的电压维持在80~90伏特之间。C1储存的电荷为恒流稳流器(CCR)(NSI45020AT1G)及LED串(此电路示例中含二十二颗LED)供电。CCR将LED串的电流维持在20毫安(mA)。电路中包含与LED串行的电阻R4(10Ω,1.0%),用于测量LED串电流(200mV=20mA)。 

  必须注意的是,图2中迹线1代表的是整流桥电路的输出波形;迹线2为截波器电路输出部分的电容C1两端的电压;而迹线3则是电流感测电阻(10Ω,1.0%=200mV=20mA)两端的电压。 


 
图2 在150VAC输入电压条件下,电路周期不同部分呈现的电压。

[1] [2]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)
Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:138,691.40000 毫秒