·上一文章:基于PSoC3芯片的无位置传感器BLDC电机控制
·下一文章:基于PIC16F877A的太阳能与市电互补照明系统控制器的设计
式(5)称为增量型PID控制算法。
增量型PID与位置PID控制算法,本质上是一样的,仅在计算方法上有所变化。增量式算法一般用于步进电机之类的对象,但由于本文所用到的机器人的电机为非步进电机,它所输入的控制量应为绝对数值。所以本文采用位置式PID算法[5]。
对于PID 3个参数的调节有各种不同方法,在本实验中主要是试凑法。试凑法也要遵循一定的规律,一般来说,增大比例系数Kp,将加快系统响应速度,减少系统静态误差,但直接影响系统的稳定性。增大积分时间常数Ti,有利于提高系统的稳定性,但同时也加大了系统消除稳态误差的调节时间。微分控制作用,将改善系统的动态性能。
在整个反馈系统的设计中,还有一个重要问题就是系统的采样时间T,本系统的采样时间不能设置得太短。由于机器人的测速是由光电编码器来完成,而实验中用到的码盘条纹只有66等份,时间太短,测速不准确,同时因微分作用加强,使得速度值抖动很大。此外,机器人本身存在非线性特性,这样就必须选择一个合适的采样时间。经过实验,当采样时间≥0.5 s时,机器人反馈回来的速度较平稳,抖动明显减小。整个反馈控制系统的程序流程图如图4所示。
4 仿真结果分析
通过调节PID的3个参数,记录下机器人每次输出的速度值,然后再用MATLAB进行仿真,通过测得实际数据的仿真图如图5所示。
本文提出的PC机对机器人的无线实时反馈控制,在20 m以内的距离都可以实现,且实时性良好。对每一个采样时间内反馈回来的数据PC机都能及时处理,并把它送回给机器人,这样机器人实时地接收数据、实时地接收PID校正后的运动状态,因此机器人就可以按事先设定好的状态行走,从而达到了控制的目的。