·上一文章:飞思卡尔智能车舵机和测速的控制设计与实现
·下一文章:基于GPRS的污水处理监控系统设计
从表l可以得到,单根网线可传输l 024x512全彩或者1 024x768双色场频30 Hz的数据;两根网线传输l 024x512全彩或l 024x768双色场频60 Hz的数据。
1.4 LED显示屏灰度扫描实现
LED显示屏由多个显示模组组合而成,显示接口一般由以下几个信号组成:串行数据信号:多组红、绿、蓝信号;串行时钟信号;CLK;串行锁存信号:LATCH;输出使能信号:OE;行编码信号(静态模组时无行信号):一般最多16行扫描,行扫描信号在显示屏模组上由译码器(74HCl38等)译码得到。
LED显示屏为实现大面积显示,屏幕面积一般非常巨大,而显示屏的控制数据一般都是串行传送,控制线都非常长且容易收到干扰,在大面积情况下可以保证稳定传输的信号频率有限。如果增加系统的控制面积,一般方法有:1)提高显示屏控制信号的时钟频率。但这种提高是有限的;2)降低刷新频率。刷新频率降低必将影响显示稳定度,效果很差;3)多个控制器同时处理。增加扫描控制器必然增加成本。
本设计采用灰度切片的方式来实现高灰度、大面积、高刷新频率显示:按256级灰度(8位)计算,8位权值数据由高到低依次为D7(128权值),D6(64权值)……DO(1权值)。设置合适的输出显示屏的串行时钟。提高并行输出的RGB数据信号组,即可提高显示屏面积并满足实际高清显示效果。本设计中,实际控制面积为l 024x768像素点。实际测试可以发现,采用灰度切片方式后,显示屏亮度损失极小,可以实现非常稳定的视频显示。
2 系统设计
2.1 采样发送板功能分解
图2为采样发送板STR总体架构图和FPGA功能模块图。