压力传感器应用广泛,例如汽车中的多路压力测量(如空气压力测量和轮胎系统、液压系统、供油系统的压力测量)、环境控制(如加热、通风和空气调节)中的压力测量、航空系统中的压力测量以及医学中动脉血液压力测量等。这里将在传统压力传感器中使用一种新原理一介观压阻效应口,即在共振隧穿电压附近,通过4个物理过程,将一个微弱的力学信号转化为一个较强的电学信号。
用基于介观压阻效应的共振隧穿薄膜替代传统的压阻式应变片作为敏感元件,通过理论分析和仿真计算验证了该结构对传感器灵敏度、固有频率的影响,从理论上证明了介观压阻效应原理可以提高压力传感器的灵敏度,扩大其测量频率的范围。
介观压阻效应及GaAs,AlAs/InGaAsDBRT结构薄膜
介观压阻效应的定义为“等效电阻的应力调制”,等效电阻是对共振隧效应的一种具体描述。由4个物理过程组成:①在力学信号下,纳米结构中的应力分布将发生变化;②一定条件下应力变化可引起内建电场的产生;③内建电场将导致纳米带结构中量子能级发生变化;④量子能级变化会引起共振隧穿电流变化。简言之,在共振隧穿附近,通过上述过程,可将一个微弱的力学信号转化。为一个较强的电学信号,体现出较大的压阻系数。这里所用的介观压阻效应元件为GaAs/A1As/InGaAs DBRT结构薄膜纳米级窄带隙材料。随着外部压力引起的拉伸应变的变化(如图1所示),DBRT结构的共振隧穿电流和阻抗显著变化。并且,阻抗应变输出可由外部电压有效调节。其优点是灵敏度高、灵敏度可调、灵敏度随温度变化小。
传感器结构设计及力学分析
所设计的压阻式压力微传感器,其制法是将N型硅腐蚀成厚10~25μm的膜片,并在一面扩散了4个阻值相等的P型电阻。硅膜片周边用硅杯固定,则当膜片两面有压力差时,膜片即发生变形,从而导致电阻变化。用微电路检测出这种电阻变化,通过计算即可得出压力变化如图2所示。
计算时假设:小挠度理论;压力是均匀作用于平膜片表面。由平膜片的应力计算公式可知:
当r<0.635R时,σ>0;
同样,当r=0.812R时,σT=0,且σr<0,如图3所示。在圆形硅膜片上,沿[110]晶向,在0.635R半径内外各扩散2个电阻,并适当安排扩散的位置,使得σn=一σro,则有(△R/R)i=一(△R/R)