1前言
风机和水泵在国民经济各部门中应用的数量众多,分布面极广,耗电量巨大。据有关部门的统计,全国风机、水泵电动机装机总容量约35000MW,耗电量约占全国电力消耗总量的40%左右。目前,风机和水泵运行中还有很大的节能潜力,其潜力挖掘的焦点是提高风机和水泵的运行效率。据估计,提高风机和水泵系统运行效率的节能潜力可达(300~500)亿kW·h/年,相当于6~10个装机容量为1000MW级的大型火力发电厂的年发电总量。
在火力发电厂中,风机和水泵也是最主要的耗电设备,加上这些设备都是长期连续运行和常常处于低负荷及变负荷运行状态,其节能潜力巨大。据统计:全国火力发电厂八种风机和水泵(送风机、引风机、一次风机、排粉风机,锅炉给水泵、循环水泵、凝结水泵、灰浆泵。)配套电动机的总容量为15000MW,年总用电量为520亿kW·h,占全国火电发电量的5.8%。发电厂辅机电动机的经济运行,直接关系到厂用电率的高低。随着电力行业改革的不断深化,厂网分家、竞价上网等政策的逐步实施,降低厂用电率,降低发电成本提高电价竞争力,已成为各发电厂努力追求的经济目标。
我国火电机组的平均煤耗为0.4kg/kW·h,比发达国家高(0.07~0.1)kg/kW·h,而厂用电率的高低是影响供电煤耗和发电成本的主要因素之一。国产300MW机组的厂用电率平均为4.71%,而进口(GE公司)机组为3.81%。国产机组比进口机组约高20%左右。国产机组厂用电率偏高的原因主要是辅机电动机在经济运行方面存在问题和差距。
国外火电厂的风机和水泵已纷纷增设调速装置,而目前我国火电厂中除少量采用汽动给水泵,液力耦合器及双速电机外,其它风机和水泵基本上都采用定速驱动。这种定速驱动的泵,由于采用出口阀,风机则采用入口风门调节流量,都存在严重的节流损耗。尤其在机组变负荷运行时,由于风机和水泵的运行偏离高效点,使运行效率降低。调查表明:我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。由于目前普遍的机组负荷偏低,风机的效率就更低,有的甚至不到30%,结果是白白地浪费掉大量的电能,已经到了非改不可的地步。
目前国内的火电机组大都处于低负荷或变负荷运行状态,原因有三:
——近年来由于装机容量的迅速增长,全国基本上摆脱了电力供应紧张的局面,电力供应有了盈余,火电机组不得不压低负荷运行;
——由于负荷结构的变化,电网负荷的峰谷差加
大,其值一般达到电网最高负荷的30%,有的电网甚至高达50%;
——由于目前电网还缺少专门带尖峰负荷的机
组(例如坝库式水电机组,抽水蓄能机组,燃气轮机组等),所以一般电网的尖峰负荷和低谷负荷都要求火电机组来承担,火电机组不得不作调峰变负荷运行。
在机组变负荷运行方式下,如果主要辅机采用高效可调速驱动系统取代常规的定速驱动系统,无疑可节约大量的节流损耗,节电效果显著,潜力巨大,这已是不争的事实。除此之外,由于可调速驱动系统都具有软起动功能,可使电厂辅机实现软起动,避免了由于电动机直接起动引起的电网冲击和机械冲击,从而可以防止与此有关的一系列事故的发生。例如电动机转子笼条的疲劳断裂,定子端部绕组绝缘损坏击穿等重大事故,提高了辅机运行的可靠性。
2风机水泵调速运行的必要性和优越性
21风机
风机是火力发电厂重要的辅助设备之一,锅炉的四大风机(送风机、引风机、一次风机或排粉风机和烟气再循环风机)的总耗电量约占机组发电量的2%左右。随着火电机组容量的提高,电站锅炉风机的容量也在不断增大,如国产200MW机组,风机的总功率达6440kW(其中,送风机2台2500kW,引风机2台2500kW,排粉风机总功率1440kW),占机组容量的3%以上。因此,提高风机的运行效率对降低厂用电率具有重要的作用。
我国电站风机已普遍采用了高效离心风机,但实际运行效率并不高,其主要原因之一是风机的调速性能差,二是运行点远离风机的最高效率点。我国现行的火电设计规程SDJ-79规定,燃煤锅炉的送、引风机的风量裕度分别为5%和5%~10%,风压裕度分别为10%和10%~15%。这是因为在设计过程中,很难准确地计算出管网的阻力,并考虑到长期运行过程中可能发生的各种问题,通常总是把系统的最大风量和风压富裕量作为选择风机型号的设计值。但风机的型号和系列是有限的,往往在选用不到合适的风机型号时,只好往大机号上靠。这样,电站锅炉送引风机的风量和风压富裕度达20%~30%是比较常见的。
电站锅炉风机的风量与风压的富裕度以及机组的调峰运行导致风机的运行工况点与设计高效点相偏离,从而使风机的运行效率大幅度下降。一般情况下,采用风门调节的风机,在两者偏离10%时,效率下降8%左右;偏离20%时,效率下降20%左右;而偏离30%时,效率则下降30%以上。对于采用风门挡板调节风量的风机,这是一个固有的不可避免的问题。可见,锅炉送、引风机的用电量中,很大一部分是因风机的型号与管网系统的参数不匹配及调节方式不当而被调节门消耗掉的。因此,改进离心风机的调节方式是提高风机效率,降低风机耗电量的最有效途径。图1给出了离心式风机不同调节方式耗电特性比较曲线。
离心式风机在变速调节的过程中,如果不考虑管道系统阻力R的影响,且风压H随流量Q成平方规律变化,则风机的效率可在一定的范围内保持最高效率不变(只有在负荷率低于80%时才略有下降)。图2给出了采用风门挡板调节和变速调节方式时,风机的效率-流量曲线。
由图2可知:在风机的风量由100%下降到50%时,变速调节与风门挡板调节方式相比,风机的效率平均高出30%以上。因而,从节能的观点来看,变速调节方式为最佳调节方式。发电厂辅机采用定速驱动时,风机靠风门挡板,水泵则靠阀门开度来调节流量,除产生大量的节流损耗外,反应速度慢,导致锅炉的燃烧自动无法投入,因而机组的协调控制无法投入,机组无法响应负荷的动态变化。辅机采用调速驱动后,机组的可控性提高了,响应速度加快,控制精度也提高了。从而使整个机组的控制性能大大改善,不但改善了机组的运行状况,还可以大大节约燃料,进一步节约能源。同时,采用变速调节以后,可以有效地减轻叶轮和轴承的磨损,延长设备使用寿命,降低噪声,大大改善起动性能。工艺条件的改善也能够产生巨大的经济效益。
图1离心式风机不同调节方式耗电特性比较
图2不同调节方式下的风机效率