其中:f(i)为真实信号;e(i)为噪声;s(i)为含噪声的信号。在实际工程中,有用信号通常表现为低频部分或是一些比较平稳的信号,而噪声信号则通常表现为高频的信号。所以消噪过程可按如下方法进行处理:首先对信号进行小波分解,则噪声部分通常包含在各层的高频分量中,因而可以以门限阈值等形式对小波系数进行处理,然后对信号进行重构即可达到消噪的目的。
根据上文的分析可以知道,一维信号的消噪过程可分为2个步骤进行:
(1)一维信号的小波分解。选择一个小波并确定一个小波分解的层次N,然后对信号进行N层小波分解;
(2)小波分解高频系数的阈值量化。从第1层到第N层的每一层高频系数选择1个阈值进行软阈值量化处理;
(3)一维小波的重构。根据小波分解的第N层的低频系数和经过量化处理后的第1层到第N层的高频系数,进行一维信号的小波重构。
在这三个步骤中,最关键的就是如何选取阈值和如何进行阈值的量化,从某种程度上说,它关系到信号的质量。这里针对传统信号的阈值函数选取以及分解系数处理方式的不足之处,结合工程实际进行了改善。
2 小波阈值函数的构建
小波阈值去噪的理论依据为:属于能量有限空间的信号在小波域内其能量主要集中在有限的几个系数中,而噪声的能量却分布在整个小波域中,因此经过小波分解后信号的系数要大于噪声的系数,于是可以找到一个合适的数λ作为阈值(门限),当分解系数小于该阈值时,认为这时的分解系数主要是由噪声引起的,并置为零,予以舍弃;当分解系数大于该阈值时,认为这时的分解系数主要是由信号引起的,则把这一部分分解系数的直直接保留下来(硬阈值方法)或者按某一固定量向零缩(软阈值方法),然后由新的小波系数进行小波重构到去噪后的信号。
小波阈值的选取是一个非常重要的步骤,其直接影响噪声消除的效果。很明显,如果阈值过高,则会将系数分量中的信号成分当作噪声分量去除,造成信号失真;反之,若阈值选取过低,又不能充分去除噪声,不能达到很好的效果。此外,不同的阈值构建方法其适用场合也不尽相同,必须围绕信噪比和信号特点综合考虑构建方式。
针对微弱信号的特点,即SNR<一1,此时噪声的能量较大,由于信号的信噪比:
式中:σs为信号强度;σn为噪声强度。由此可知,当信号强度减小或者噪声强度增大时,信噪比均会减小。因此,当噪声占主要地位时,若是只考虑噪声强度是不全面的,例如当信号强度不变,增大噪声,信噪比减小;若是只考虑噪声强度则会使得阈值成线性上升,使得丢失的信息过多,对于信号参数的估计和信号的重构都是不利的。另一方面,如果信号是周期性连续信号,最好选择同样具有连续性的阈值函数。因此,考虑选取阈值为:
其中:j为小波变换尺度;N为采样点个数;μ为调节因子;用以调节随σs/σn变化,exp[μ(σs/σn)]变化的快慢。
3 阈值处理方式的优化
传统的硬、软阈值方法虽然在实际中得到了广泛的应用,也取得了较好的效果,但这些方法本身还存在一些缺陷。在硬阈值处理过程中,得到的估计小波系数值连续性差,即由于分解系数在±λ处是不连续的,因此重构所得的信号可能会产生一些振荡;而软阈值方法中估计小波系数虽然整体连续性好,但是由于当小波系数较大时,分解系数之间总存在恒定的偏差,这将直接影响重构信号与真实信号的逼近程度,给重构信号带来不可避免的误差。
如果对噪声用分解的系数用C(J,k)表示,其中j代表小波尺度,k代表时间,则可以得出如下结论:
(1)如果所分解的信号是一个平稳、零均值的白噪声,则其小波分解系数是不相关的;
(2)如果所分解的信号是一个高斯噪声,则其小波分解系数是独立的,并且也是高斯分布的;
(3)如果所分析的信号是一个有色、平稳、零均值的高斯噪声序列,则其小波分解系数也是高斯序列。对每一个分解尺度j,其系数是一个有色、平稳的序列。
用ω(j,k)表示对含噪信号进行小波分解后得到的小波系数,由于小波变换是一种线形变换,因此它由2部分组成:信号对应的小波系数和噪声对应的小波系数。由于软阈值方法估计出来的小波系数ω(j,k)的绝对值总比ω(j,k)要小λ而影响了重构精度,应设法减小此偏差。只要使ω(j,k)与由信号对应的小波系数之间的差值尽量小,则ω(j,k)更接近于信号对应的小波系数,重构精度就越高。构造函数: