系统的主要特点如下:
(1)基于软总线平台的分布式远程网络控制技术,采用软总线提供的开放式软件架构,通过总线核分离上层监测软件和底层现场监测系统通信协议,支持新的硬件系统和软件系统的无缝集成,支持多种现场总线技术。基于软总线的标准网络接口(如Ethernet),将高层桥梁监测软件和底层各种类型的桥梁监测现场系统通过网络互联起来,通信基于TCP/IP协议栈,从而实现多座桥梁设施的松耦合分布式远程监测。
(2)已建的、在建的各种类型桥梁监测系统都可以通过软总线平台纳入到整个监测系统,组建大型监测网络,实现一个城市或区域桥梁设施的松耦合分布式远程监测。
(3)在桥梁监测系统中引入软通信平台,突破了传统的单一专用桥梁监测系统和目前基于标准网络接口的远程桥梁监测系统,可节约监控成本,提高监控效率和性能,实现一个城市或区域多座路桥设施的分布式一体化集中监控。
4 建立实验测试系统
采用LabMap软总线[5]建立具有两个桥梁监测子系统的实验测试模型,如图3所示。
LabMap是一种工业控制软总线,具有两个层次的抽象接口:应用软件接口和硬件驱动接口。LabMap软总线支持网络功能,它将整个网络功能抽象成一个高度优化的网络接口[6]。
实验测试系统中两个桥梁监测现场系统的设备,主要有数据采集系统、现场总线系统和各类振弦式传感器,数据采集系统采用DataTaker DT80g智能采集系统,现场总线采用Wago现场采集总线系统,传感器主要采用北京基康的振弦式桥梁监测传感器。
实验系统的硬件设备还包括联网设备和控制PC(运行软总线LabMap及HMI),各硬件系统设备互联方式如图3所示。
(1)交换机、本地控制PC1、Wago现场总线采集系统和各种桥梁监测传感器联网组成桥梁监测现场子系统1。该子系统采用10.10.10.0/24网段。本地控制PC和Wago现场总线采集系统之间基于标准的Modbus/TCP通信,通信接口为标准的以太网口。
(2)DT80g智能型数据采集器、本地控制PC2和各种桥梁监测传感器组成桥梁监测现场子系统2。该子系统采用20.20.20.0/24网段。DT80g通过RS485串行口连接控制PC,通信方式为串行通信。
(3)两个桥梁监测子系统和远端控制PC通过路由器实现互联,各端口配置不同网段,组成分布式网络,以模拟实际的网络应用环境。
本实验系统不仅可对各个桥梁监测现场子系统的应变、应力、温度、位移、倾斜等物理特性进行本地实时监测,也可从远程监控终端实现对两个桥梁监测现场子系统的分布式监测及基于Internet的数据共享和对比分析。
如在远端PC对子系统1的应变进行监测,采用GK-4200型应变计。其采集值和工程应变量的转换的理论和修正公式如式(1)和式(2),修正考虑了弦初始状态和温度的影响。
其中,R0为初始测量值,R1为当前测量值,Gf为理论系数3.304,CF1为用于振弦仪器的钢材温度膨胀系数12.2 uε/℃。测试结果略。
桥梁在运行期间由于会受到气候、氧化、腐蚀或老化等因素,及长期在恒载或活载的作用下遭受损坏,其强度和刚度会随时间的增加而降低,这不仅影响了安全行车,更会使该桥的使用寿命缩短。因此对桥梁的健康状况进行实时监测和长期统计分析具有重要的意义。
为了减少城市或区域内多座桥梁设施的监控维护成本,提高监控能力,对多座桥梁实施松耦合分布式远程监控是一个可行的途径。但目前已建立的单一桥梁健康监测系统采用了不同的监控技术和网络结构,直接通过某种硬件设备适配实现互联,难度高,代价大。在桥梁监测系统中引入软通信平台,利用软通信平台提供现有各种桥梁监测现场系统的不同技术接口和统一的通信平台,可实现各种不同桥梁监测现场子系统的分布式接入和集中监控。通过实验网络测试证明,基于软总线LabMap的多点分布式远程桥梁监测系统是一种可行的实现方案。