首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
电动汽车充电器电路拓扑的设计考虑
来源:本站整理  作者:佚名  2011-04-08 09:27:10



    另外,在电压源型变换器中,开关器件的电压得到很好的限制,但在全桥和半桥拓扑中,却可能会因击穿损坏。这些变换器通常被分为串联、并联和串并联谐振3种类型。

    图12给出这些基本的谐振变换器拓扑示意图。在串联谐振变换器中,谐振电感与变压器原边串联,而其他类型变换器中,电容与变压器串联。只有串联谐振变换器是硬电流源特性,而其他类型变换器是硬电压源型。

图12    谐振变换器拓扑

    为了有效利用感应耦合器磁化电感和匝间电容,可以采用不同的串联谐振变换器。一种拓扑形式是图13所示的串并联LLCC谐振变换器[9][10]。另外一些谐振变换器也可考虑。如前所述,匝间电容、磁化电感和漏感均得到了充分利用。这一方案因变换器和感应耦合器得到了很好的匹配,颇具吸引力。

图13    串并联LLCC谐振变换器

    该变换器可以工作于高于谐振频率的ZVS状态,或低于谐振频率的ZCS状态,如图14所示。输出电压可采用变频控制。然而,为了优化感应耦合器性能,一般设计为高频对应于轻载工作,低频对应于重载工作,从而在频率变化范围内,变换器的开关损耗基本保持恒定。

图14    串并联谐振的两种软开关工作模式

    由于并联谐振电路的升压特性,最大的变换器电压增益稍大于1。对于输入电压450V,输出电压400V,可用1∶1的匝比。这种变换器轻载工作时输出电压控制特性比较差,需要采用其他的一些控制技术。一种方案是使用输入Boost级调节输出电压,另一种方案是采用PWM或移相控制。这两种控制技术在相关文献中都有较详细的介绍。

4.3    充电模式3

    这是一种快速充电模式,主要针对长距离旅行情况进行充电。充电器对应高功率特性(>100kW),主要用于一些固定的充电站。对于100kW的功率等级,充电时间约为15min。为提高功率因数,降低输入电网谐波,变换器输入端一般需要采用有源整流电路,如图15所示。可以采用不同的控制方案,包括矢量控制,六阶梯波控制,数字控制技术等[11]。

图15    有源输入整流电路

    为了进一步提高变换效率,允许高频工作,可以采用如图16所示的ZVT电路。利用辅助电路实现了主开关器件的ZVT,主开关仍为PWM控制。

图16    ZVT三相Boost整流输入电路

    如前所述,高功率充电模式通常只在充电站使用。因为,充电站可能会装有多个充电器,每个充电器均采用单独的整流级必然会使系统体积庞大,成本大大增加。为简化系统设计,可为整个充电站配备一个专门的PFC或谐波补偿变换器,从而充电主电路,都连接在同一个有源输入整流电路上,如图17所示。

图17    配备专门的PFC或谐波补偿器的充电器系统主电路结构

    有源滤波器定额约为充电站额定功率定额的20%。在整流端一般采用直流侧电感来提高整流器的功率因数,可以选用串联或并联方式的有源滤波方案。

    有源滤波器可以采用传统硬开关PWM逆变器电路,或采用软开关逆变器,从而工作在更高开关频率,提高控制带宽,对更高阶的谐波进行补偿。谐振直流环节变换器比较适合于在较宽中功率范围逆变器场合下工作。图18给出了有源箝位谐振直流环节逆变器功率电路。

图18    有源嵌位谐振直流环节逆变器功率电路

    与传统PWM变换器不同的是,谐振直流环节逆变器采用离散脉冲调节(DPM,Discrete Pulse Modulation)控制,开关频率较高,所需的滤波器尺寸较小。此外,由于dv/dt得以控制,所产生的EMI较小。

    与充电模式2类似,充电变换器可以直接采用全桥或带谐振的全桥变换器。但是,由于充电模式3功率级更高,与谐振式全桥变换器相比,一般的全桥变换器必然会对应很高的峰值电流。因此,应当考虑采用ZVS或ZCS谐振全桥拓扑来有效降低损耗。

    如前所述,串并联全桥谐振型变换器是可选拓扑,它满足了感应耦合充电变换器的所有设计考虑,并且完全利用了感应耦合器的等效电路元件。根据功率器件性能差异,可分别选择ZVS或ZCS方案。

    对于高功率等级和高频场合,具有相对较小导通损耗和高频能力的IGBT具有较大的吸引力。由于感应耦合器优化设计的频率范围为70~300kHz,因此,需要软开关技术来优化IGBT的性能。文献[10]中结果表明:在ZVS情况下,IGBT关断损耗仍然较大,管芯温度较高;而ZCS可使得IGBT在ZCS情况下关断,减小了关断损耗,使IGBT能够更好地用于高开关频率下。

    为了进一步降低器件电流应力,减小传输电缆的尺寸和重量,可以采用较高电平的总线电压。此时感应耦合器可以采用2∶1的匝比。从而当副边采用4匝时,原边要采用8匝。对于400V的电池电压,直流总线电压至少必须为DC800V,此时必须采用定额为1200V/400A的IGBT。

5    结语

    本文根据SAEJ-1773对感应耦合器的规定,对电动汽车供电电池的充电器进行了讨论。根据感应耦合器的标准及不同的充电模式,确定了与感应耦合器相匹配的充电器的几种设计方案,对适合不同充电模式的电路拓扑进行了选择。最后给出了分别适合于不同充电等级的备选变换器拓扑方案。

上一页  [1] [2] [3] [4] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)
Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:165,300.80000 毫秒