摘要:提出采用正则有符号数字量(CSD)编码技术实现FIR滤波器。首先分析了FIR数字滤波器理论及常用设计方法的不足,然后介绍了二进制数的CSD编码技术及其特点,给出了其于CSD编码的定点常系数FIR滤波器设计过程,使用VHDL语言实现了该常系数滤波器的行为描述。最后在Max+PlusⅡ环境下进行实验仿真和验证,与DA和2C编码算法比较结果表明,用CSD编码技术实现的滤波器可以有效提高运算速度并降低FPGA芯片的面积占用。
关键词:CSD编码;分布式算法;FIR;FPGA;常系数乘法
引言
在图像处理、语音识别等数字信号处理中,数字滤波器占有重要的地位,其性能对系统有直接的影响。随着系统在宽带、高速、实时信号处理上要求的提高,对滤波器的处理速度、性能等也提出更高的要求。目前数字滤波器的硬件实现方法通常采用专用DSP芯片或FPGA,DSP特有的一些硬件结构和特性使其非常适合作数字滤波电路,但由于其软件算法在执行时的串行性,限制了它在高速和实时系统中的应。FPGA最明显的优势在于其实现数字信号处理算法的并行性,可以显著提高滤波器的数据吞吐率,随着FPGA技术的不断发展,现在的FPGA不仅包含查找表、寄存器、多路复用器、分布式块存储器,而且还嵌入专用的快速加法器、乘法器和输入/输出设备,因而成为高性能数字信号处理的理想器件。而在FPGA中,数字滤波器不同的实现方法所消耗的FPGA资源是不同的,且对滤波器的性能影响也有较大差异。基于此,本文从FIR滤波器的系数考虑,采用CSD编码,对FIR数字滤波器进行优化设计。
1 FIR滤波器的基本原理
一个L阶的FIR数字滤波器的基本系统函数见式(1):
式中:h(n)表示滤波器的系数;x(i)表示带有时间延迟的输入序列,此表达式对应的直接型实现结构可用图1来表示。
可以看出,FIR滤波器是由一个“抽头延迟线”加法器和乘法器的集合构成的。传给每个乘法器的操作数就是一个FIR系数。对每次采样x(n)要进行N次连续的乘法和(N-1)次加法操作,因实际中滤波器的阶数都很高,实现高数据吞吐率就需要很多的硬件乘法器,硬件实现时将占用大量的资源,同时也会因此影响滤波器的速度和性能。为了解决这个问题,人们从多个角度寻求优化方法。从数字滤波器表达式看,对它
的优化操作,实际最终转换成两类改进。一类是针对输入xi的DA操作的改进;另一类是针对系数hi编码的操作。
2 DA算法
分布式算法(Distributed ArithmetIC,DA)是为了解决乘法资源问题而提出的经典优化算法这种算法结构,可以有效地将乘法运算转换成基于查找表LUT(Look Up Table)的加法运算,利用查表方法快速得到部分积。
对于低阶而言,由于LUT表地址空间较小,与传统算法相比,分布式算法可极大地减少硬件电路的规模,提高电路的执行速度。然而当FIR滤波器阶数很高时,作为查找表的ROM将很大。阶数每增加1位,ROM容量就增加1倍,这种以2的幂次递增的资源占用是硬件资源不可接受的。因而在滤波器系数较高时,为了减小查找表的规模,常采用一定的方法将大LUT分割为一些小的LUT的方法。如滤波器的多相分解结构、多路复用器和加法器替代查找表的算法等。
3 CSD编码算法
常数乘法可以通过“移位-加”来完成,而乘数中“1”的个数决定了“加”操作的次数,当然“1”的个数越少越好,正则有符号数字量CSD(CANonic Signed Digit)编码就可以实现“1”的个数的最小化。
3.1 CSD编码
与传统的二进制编码的二值表示法不同,CSD编码的数字值域为0,1和-1。-1常表示成1。这种编码是具有最少非零元素的一种表示法,用CSD编码表示数字的形式具有惟一性。在实际硬件电路中可以采用如下原则生成最佳CSD编码:
①从最低有效位开始,用10…0 取代所有大于2的1序列,此外还需要用110 取代1011;
②从最高有效位开始,用011代替10 。
最佳CSD编码的特点是:
①在一个CSD数据里,没有两个连续的非零位;
②对同一个数字的CSD编码是独一无二的;
③是数字表示法里,所含非零位数最少,相比于二进制补码系统平均减少33%的非零项。