4.3 模拟迟滞比较算法
模拟迟滞比较算法与普通的自动感应亮度控制的一个阈值电压不同,设定了两个阈值电压,分别称为正向阈值电压和负向阈值电压。在环境亮度输入信号从低电平(暗)上升到高电平(亮)的过程中使PWM电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平(亮)下降到低电平(暗)的过程中使PWM电路状态发生变化的输入电压称为负向阈值电压。
亮度感应自动控制的模拟迟滞比较算法将PWM的背光控制分成五段,四个模拟迟滞比较算法控制。每个模拟迟滞比较器有两个阈值ADC值,分别称为正向阈值ADC和负向阈值ADC。在环境亮度输入信号从低电平(暗)上升到高电平(亮)的过程中使PWM电路状态发生变化的输入ADC称为正向阈值ADC,在输入信号从高电平(亮)下降到低电平(暗)的过程中使PWM电路状态发生变化的输入ADC称为负向阈值ADC。例如ADC2是正向阈值ADC,ADC1是负向阈值ADC,在环境亮度输入信号从ADCI低电平(暗)上升到ADC2高电平(亮)的过程中,使PWM状态由PWN5转变为PWM4;在环境亮度输入信号从ADC2高电平(亮)下降到ADC1低电平(暗)的过程中,使PWM状态由PWN4转变为PWM5。这样设计成阻止环境亮度输入信号出现微小变化(低于某一阈值ADC)而引起输出PWM的改变,确保稳定的液晶面板背光控制。如图4亮度感应自动控制的模拟迟滞比较算法的曲线图所示。
5 结束语
本设计实现了亮度感应自动控制,分为亮度数据采集、自动校正算法、模拟迟滞比较算法、控制背光亮度模块。通过多次采样自动校正算法,得到稳定的亮度控制信号。提出软体模拟迟滞比较算法模型,避免由于环境亮度出现微小变化而引起画面亮度忽亮忽暗的变化,为液晶电视的亮度感应处理提供了一个理想的解决方案。