CCl校验位相异对应出错数据位列号倒数第二位为1;CC2对应列号倒数第3位为1,可以推出错误数据位的列号为110,同理行号相关的几个校验位中CC4,CC5出现相异可以推出错误数据位的行号为0110,由此可以知道出错的数据位是DA22,再对确认出错的数据位取反就实现了纠正1位错误的功能。而如果出现2位错误,比如数据位DAl和DA34同时出错,如图2中所示,这会引起新老校验位中的CC0,CCl,CC3,CC4,CC6同时出现相异。这时如果还按照上述纠正1位错误时的算法,就会推出出错数据位的行号为1011列号为011,这样,就会认为是数据为DA51发生了翻转,从而产生错误的检纠错结果,如图2中粗箭头所示。以前的测试数据表明,若在近地轨道中,SRAM存储器中的每一个存储数据位一天之内发生SEU概率约是10-7(位·天),则可以推导出这个SRAM中1组64位的数据,在一天时间内有2位同时出现错误的可能性约为10-10(次·天),在南大西洋辐射异常区和太阳活动高峰期,这种情况的发生率可能还会提高1~2个数量级。
为了避免在发生双位元错误时出现错检错纠的情况,需要增加1个校验位CC7,它是所有数据位的奇偶校验结果,即CC7=DA0⊕DAl⊕DA2⊕DA3⊕…⊕DA63。这样在每次出现1个数据位错误时,新生成的NCC7也都会与先前的值相异,而当数据位中有2个存储单元出错,其他校验位会检测有错误出现,但NCC7不会发生变化,NCC7⊕CC7=0,这时就可以判断出有双位错误,从而使系统实现了检测双位错误的功能。
2 设计实现
将所有与主存储器中数据一一对应的校验位(CCl~CC8)存储在另一个独立的8位SRAM中,系统的硬件结构如图3所示。
存储校验位的8位数据SRAM2同样遇到出现SEU效应得可能,通过分析可以知道,SRAM2出现1位数据翻转时,只有对应的一位数值与通过数据位新生成的校验位数值相异,而其他的7个校验位数据都没有变化,此时对对应的校验位取反就实现了纠错功能。对于出现双位元错误的可能,通过理论分析,可以知道一组8位的校验数据在一天中出现这种情况的概率约为7×10-13。,相比于主存储器而言降低了两三个数量级,暂时可以不予考虑。