·上一文章:变频调速在福建恒源自来水厂的设计应用
·下一文章:基于VHDL的可变速彩灯控制器的设计
2 控制系统的硬件设计
2.1 温度控制
功能完善的净水机不但能够起到净化水的作用,而且还能够根据消费者的需求对水进行精确的加热,以满足消费者的需求。当水经过直饮水机深度的科学处理时,温度控制的精度很重要。基于这个特点,本文提出了如下温度控制方案:测温元件采用不锈钢管负温度系数热敏电阻温度传感器,温度的检测电路如图2所示。当温度变化时,热敏电阻值会随着温度的升高而减小。为了使测量的温度尽可能准,可选择在经常工作的温度区间,采用电阻值变化大的热敏电阻,上拉电阻取测量温度的中点温度时热敏电阻的阻值。这样就能把变化的电阻值转变成电压值,经过滤波后,送单片机内部的A/D转换器进行转换后得到相应的温度值。
加热装置的电路控制如图3所示。ICE_CON连接到数字扩展口上,ICE_SYS连接到加热装置。
温度执行机构主要由光隔控制可控硅的通与断来控制加热电源的通与断。用可控硅代替继电器等机械开关,可使控制具有灵敏、可靠、抗干扰能力强等优点[1]。数字信号经过开关量扩展电路后,送光电耦合器MOC3043,由MOC3043控制可控硅的控制极。通过光电耦合器与可控硅的结合,能够有效地把微控系统与交流220 V隔离,同时又因为双向可控硅采用过零触发的方式(这是一种理想的触发工作方式),并使正弦波以完整的形式加到负载上,既有利于保护元器件的安全使用和负载的工作稳定性,又不会对电网造成污染,减少了对其他设备的干扰[2]。MOC3043是具有内部过零检测器的光电耦合可控硅驱动器,用它驱动可控硅具有简单可靠的优点。因为当输入端导通时,输出端并不马上导通,只有电源电压过零时才会导通,这样负载输出端输出的就是完整的正弦波[3]。