摘要:多电平变换器作为一种应用于高压大功率变换场合的新型变换器,其电路拓扑结构和PWM控制方法是当前的一个研究热点。基于电平箝位方式对多电平变换电路进行了分类,比较了“二极管或电容箝位”和“使用独立直流电源箝位”两类典型多电平电路拓扑结构的优缺点,并将现有的多电平PWM控制方法根据其优缺点进行了比较,指出了其适用范围。
关键词:多电平;脉宽调制;电平箝位;拓扑结构;控制策略
1 引言
近年来,应用于高压大功率领域的多电平变频器引起了电力电子行业的极大关注。由于受电力电子器件电压容量的限制,传统的两电平变频器通常采用“高—低—高”方式经变压器降压和升压来获得高压大功率,或采用多个小容量逆变单元经多绕组变压器多重化来实现,这使得系统效率和可靠性下降。因而,人们希望实现直接的高压逆变技术。基于电力电子器件直接串联的高压变频器对动静态的均压电路要求较高,并且输出电压高次谐波含量高,需设置输出滤波器。多电平逆变电路的提出为解决上述问题取得了突破性的进展。
多电平逆变器的一般结构是由几个电平台阶合成阶梯波以逼近正弦输出电压。这种逆变器由于输出电压电平数的增加,使得输出波形的谐波含量减小,开关所承受的电压应力减小,无需均压电路,可避免大的dv/dt所导致的电机绝缘等问题。1977年德国学者Holtz首次提出了利用开关管来辅助中点箝位的三电平逆变器主电路,1980年日本的A.Nabae等人对其进行了发展[1],提出了二极管箝位式逆变电路。Bhagwat和Stefanovic在1983年进一步将三电平推广到多电平的结构[2]。多电平逆变器主要应用在高压大功率电机调速、无功补偿、有源滤波等领域。
本文在电平箝位基础上对多电平逆变电路拓扑结构进行了分类,分析了几种典型多电平电路拓扑的优缺点;对几种多电平电路的PWM控制方法进行了比较分析,讨论了各种方法适用的主电路结构。
2 多电平逆变电路的主电路拓扑分析
至今已提出多电平逆变电路的多种主电路拓扑结构,目前应用较为广泛的几种按照电压箝位方式可以分为两大类:
1)使用无源元器件如二极管或电容箝位的多电平逆变电路拓扑,包括二极管箝位式、电容悬浮式、电容电压自平衡式3种;
2)使用独立直流电源箝位的多电平逆变电路拓扑,包括功率单元串联和混合单元串联2种。
2.1 二极管或电容箝位的多电平逆变电路拓扑
2.1.1 二极管箝位式多电平逆变电路
二极管箝位式多电平逆变电路的特点是采用多个二极管对相应的开关器件进行箝位,同时利用不同的开关组合输出所需的不同电平。图1是二极管箝位式5电平逆变电路拓扑结构,它具有4个电容,能输出5电平的相电压,线电压为9电平。对于M电平电路,直流侧需M-1个电容,能输出M电平的相电压,线电压为(2M-1)电平。它的输出电压和输出电流的总谐波畸变率都大大减小。这种结构有显著的优点,即利用二极管进行箝位,解决了功率器件串联的均压问题。
图 1 二 极 管 箝 位 式 5电 平 逆 变 电 路
Fig.1 Three phases five levels diode neutral point clamped converter
但是,二极管箝位式多电平变频器也有如下缺点。
1)虽然开关器件被箝位在Vdc/(M-1)电压上,但是二极管却需要不同倍数的Vdc/(M-1)反向耐压。如果使二极管的反向耐压与开关器件相同,则需要多管串联,如图2(a)所示,其数目为(M-1)(M-2)/2,当M很大时,增加了实际系统的实现难度。
2)当逆变器只传输无功功率时,电容器在半个周期内由相等的充电和放电来平衡电容电压。但是当逆变器传输有功功率时,由于各个电容的充电时间不同,将形成不平衡的电容电压。
上述的二极管箝位式多电平逆变电路中的二极管承受电压不均匀,若按照最大值选择则造成浪费,如果多管串联又会产生均压问题。因此,在1999年Xiaoming Yuan提出了一种新的结构[3],如图2(b)所示。它的器件个数和开关控制的方法和原来的结构完全相同,只有二极管的放置位置不同。该结构不但将开关管的电位箝位在单个电容电压,而且箝位二极管也被箝位在单个电容电压以内,从而解决了箝位二极管承受电压不均的问题。
( a) 二 极 管 串 联 箝 位 ( b) 二 极 管 自 箝 位
(a) Series diodes clamped converter ( b) Diodes self clamped converter
图 2 二 极 管 箝 位 的 新 结 构
Fig.2 New topology of diodes clamped convertor