首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 电子技术 > 传感与控制
基于无线传感器网络的岩体声发射信号监测系统
来源:本站整理  作者:佚名  2011-06-10 08:48:59



岩体受力被破坏之前,持续以声波形式释放积蓄的能量[1],这种岩体声发射信号包含着岩体内部状态变化的丰富信息,可为分析、预测岩体稳定性等研究提供依据[2]。为实现岩体声发射信号的可靠采集,技术人员利用声发射特征参数分析法,设计了用于不同场合的岩体声发射信号监测系统[3-4]。
    随着人们对岩体声发射现象研究的深入,越来越多的研究结果表明,现有岩体声发射信号监测系统存在以下不足[1,5]:(1)岩体声发射信号受多种因素影响,声发射特征参数不能完全反映实际岩体声发射信号的变化规律;(2)岩体声发射信号微弱且极易受到干扰,导致声发射特征参数计算存在误差,且误差范围难以确定;(3)使用有线电缆连接传感装置和监控计算机,当传感装置和监控计算机距离较远、监测点数量较多、监测点经常变动时,布线、供电、维护等变得困难且成本急剧增加;(4)频率响应范围仅为20 Hz~20 kHz,难以满足不同岩体工程需要;(5)数据传输速率为2.4~38 Kb/s,难以完整、实时传输测量数据。
    针对上述问题,基于无线传感器网络[6]和压缩感知技术[7],本文提出一种新型岩体声发射信号监测系统。该系统使用无线通信网络连接各声发射信号监测点,使用压缩感知技术实现原始测量数据的压缩存储与远程传输,可有效满足实际应用要求。
1总体设计
1.1 需求分析

    声发射信号传感器的频率响应范围应覆盖岩体声发射信号频率范围(约为200 Hz~80 kHz)。对于特定灵敏度的声发射信号传感器,应根据应用来估算有效接收范围,且尽量安放在声源点附近。岩体声发射信号监测系统除了传递声发射信号特征参数外,还应传送原始测量数据到监控计算机,应使用无线网络连接系统中的各个模块,以满足监测点数量变化、监控点移动、功能扩充等需求,且应该减少系统安装、布线、维护工作量。此外,岩体声发射信号监测系统应该具有性价比高、可靠性和灵活性都强、适应性广泛及安装维护方便等优点。
1.2 总体设计
    需求的实现关键是无线传输大流量测量数据。针对该难点,研究人员从传感器节点设计和网络设计等角度[8-9]提出一些方案,但这些方案难以处理高频声音信号,难以实现声信号远程传输,且系统成本较高。受现有方案启发,结合无线传感器网络、压缩感知等技术,本文提出如图1所示的岩体声发射信号监测系统。该系统主要由采集节点、汇聚节点、监控主机和连接三者的无线通信网络构成。
2 硬件设计
2.1硬件体系结构

    硬件设计主要是开发采集节点和汇聚节点,为实现较大流量声音数据的存储、计算和传输,节点应具备较丰富的计算、存储、带宽等资源,本文设计的传感器节点结构如图2所示。节点主要由主板、通信模块、传感器模块构成。传感器模块实现岩体声发射信号采集、前置放大和滤波。主板对传感器模块输出信号进行采样、处理,并实现存储、通信、电源等管理功能。通信模块实现数据收发和网络硬件管理。节点采用模块化设计,在主板上扩展不同电路模块,可分别实现采集节点和汇聚节点的功能。

2.2 传感器模块设计
    采集岩体声发射信号的传感器模块如图3所示。声/电转换传感器采用锆钛酸铅压电陶瓷环, 其灵敏度为5 mV/pa,频率响应范围为10 Hz~90 kHz。前置放大器为AWA14604。声/电传感器、前置放大电路和连接电缆被封装在直径30 mm、长度100 mm的外壳中,构成传感器探头,以便安装时可尽量接近声源点。前置放大器频率响应范围为5 Hz~100 kHz,输入阻抗≥2 GΩ,电压增益为40 dB,输出阻抗≤50 Ω,传感器探头输出信号经带通滤波器送入主放大器LMV822,主放大器电压增益为20~60 dB,频率响应范围为10 Hz~200 kHz,主放大器将输入信号放大到伏特级后送入主板ADC。

2.3 通信模块设计
    通信模块选用支持ZigBee协议的低功耗射频模块MRF24J40MB,其数据通信速率为250 Kb/s,工作频段为2.40~2.48 GHz,典型灵敏度为-102 dBm,最大射频输入为-23 dBm,典型输出功率为+20 dBm,发送功率控制范围为56 dB,射频覆盖范围为1 300 m,采用SPI接口与主板连接。
    汇聚节点需要根据实际情况配置其他通信模块,以便与监控主机进行数据交换。本文使用WCDMA通信模块EM770W建立汇聚节点与监控主机的连接。EM770W内置有TCP/IP协议栈,支持GSM、GPRS和HSDPA多种工作模式。HSDPA模式下的上行通信速率可达到2 Mb/s,下行通信速率可达到7.2 Mb/s。GPRS模式下的上行和下行通信速率均可达到236.8 Kb/s。通过标准串行口与主板连接,主板使用AT指令集控制该模块。
2.4 主板设计
 主板是整个节点的硬件核心,主要由处理器、外部存储、电源和扩展接口等单元电路构成,其硬件结构如图4所示。

    考虑到主板要对声音信号实时采集和处理,还要连接各种扩展电路模块,因此,主板硬件核心选用32 bit数字信号处理器TMS320F2812。其工作频率最高150 MHz,集成了256 KB的Flash、36 KB的SRAM,16通道12 bit精度ADC,SPI、UART等外设。利用TMS320F2812的集成外设,主板扩展了2 MB的SRAM芯片CY7C1061、32 KB的EEPROM芯片25LC256等资源,以满足大流量数据暂存、工作参数永久存储等需要。
 各模块电路所需电源由主板提供,支持12~36 V电池供电;所有电源变换使用DC/DC芯片以提高转换效率。汇聚节点中供给WCDMA模块的电源使用了LDO芯片MIC29302,以提供1.6 A大电流;利用LM393构建欠压保护电路,当电池电压过低时,以中断方式提醒节点保存数据且发送报警信号给监控主机。
3 软件设计
 根据应用需求和硬件构成,系统软件主要包括监控分析软件和数据采集软件两部分。
3.1 监控分析软件
 监控主机通过串行口连接通信模块EM70W,与岩体工程现场的汇聚节点交换数据。监控主机运行的监控分析软件主要实现以下功能:(1)网络管理。将用户指令(节点开关机、采样频率设置等)发送给采集节点。(2)信号分析。对接收到的声发射信号数据进行数据重建、频谱分析、声源点定位等处理。(3)辅助功能。实现人机交互、数据存储、故障报警等功能。
3.2 数据采集软件
 运行在传感器节点上的数据采集软件采用C语言和汇编语言编写,在TI公司的数字信号处理器集成开发环境CCS3.1中进行编译和调试,并通过编程器SEED-XDS560PLUS将编译好的目标代码写入TMS320F2812的片上Flash存储器中。数据采集软件结构如图5所示。

 为降低软件开发难度、提高运行实时性和资源管理效率,以便于扩展节点功能,数据采集软件使用了嵌入式实时操作系统?滋C/OS-II和ZigBee网络协议栈[10]。在这些商业软件的支持下,信号采集、数据压缩、网络通信等应用功能都可实现为受μC/OS-II管理的、具有不同优先级的任务函数,各任务函数的编写、调用如图6所示的有限状态机模型进行。

3.3 数据压缩与恢复算法
 为减少采集节点能耗,充分利用有限带宽资源,采集节点需对大流量声发射信号测量数据进行压缩,以计算量增加换取数据通信量减少。因此,软件设计的重要内容就是数据的压缩与恢复算法的选择和实现。
 现有数据压缩算法难以直接移植到资源有限的采集节点上[11],因此,在参考文献[12-14]基础上,本文使用压缩感知技术来实现采样数据的压缩、传输和重构。压缩感知技术的核心思想如下:

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)
Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:70,750.00000 毫秒