2 带隙基准原理
带隙基准输出稳定的直流电压,并且该直流电压对温度和电源电压不敏感。集成电路通常采用温度系数相反且与电源电压无关的标准电压,这两个标准电压通过相互补偿实现元件间匹配和温度跟踪。
图l给出典型二管带隙基准源电路,该电路利用VN1、VN2管的有效发射结面积比和电阻R1、R2的阻值比来获取接近零温度系数的基准源。
电路中,两个相同的晶体管VP1和VP2构成的PNP恒流源可作为VN1、VN2晶体管的集电极有源负载,晶体管VN2提供基极一发射极电压(UBE),电阻R1上产生电压△UBE。由于IE1=IE2,则: 式中:△UBE=Ut1n[(IEl/AE1)/(IE2/AE2)]=Utln(J1/J2);J为电流密度,J=I/A;AEl和AE2为发射结有效面积。
由于IE1=IE2,J与温度无关,所以:
理论上,只要合理设置R1、R2、AEl、AE2,其输出则可达到理想温度系数。由于受VPl、VP2集电极电压的不稳定等因素影响,实际输出与理论值存在偏差,因此,运算放大器被引入基准电源。
3 传统带运算放大器的带隙基准电路
图2为带运算放大器的带隙基准电路,引入运算放大器可解决电压不稳定问题。由于该电路连接具有负反馈,所以,VQ1、VQ2箝位于同一电位,电源抑制比提高,功耗降低。但其传统的带隙基准电路却具有运算放大器固有失调等问题,放大运算放大器的输入失调电压,导致输出电压产生误差,严重影响带隙基准电压源精度;同时,其输入失调电压随温度变化,这样可使输出电压的温度系数增大。因此,系统设计不采用运算放大器也同样达到性能更佳。
4 基于汽车环境的带隙基准电压源设计
4.1 采用一阶曲率补偿技术的带隙基准电压源设计
图3是一种应用于汽车ABS轮速传感器接口的带隙基准电压源电路,该电路设计采用双极性工艺和一阶曲率补偿技术,考虑到汽车行驶环境温度变化大,车身空间有限以及安全性能等问题,要求电路具有宽泛的温度范围,电路面积小,电源抑制比高以及工作性能稳定等性能。