利用该加速度计、内置的压电拾音器和MEMS麦克风各自录制了一段声音。图8给出了每个传感器的时域波形,这里没有对任何音段进行后处理。
图7 贴装在Fender Stratacoustic吉他上的加速度计
图8 采用不同传感器的时域波形
图9所示为在上述时域波形的一个波峰上所测得的压电拾音器的FFT频谱。结果显示响应中具有较强的低音分量。确实,实际的音频文件中都较多地具有丰富的低音响应。这种声音比较悦耳(还取决于个人偏好),因为腔体谐振能够产生比从乐器上直接听到的更丰富的低音。
图9 压电拾音器的FFT频谱
MEMS麦克风的输出则非常平坦,乐声的重现效果非常好。其音质非常自然,均衡较好,逼真度高。与压电拾音器相同时间点上测得的FFT频谱如图10A所示。作为参考,图10B则给出了MEMS麦克风的频率响应。
图10A MEMS麦克风的FFT频谱
图10B MEMS麦克风的频率响应
MEMS加速度计的输出非常有意思。目前其缺点包括本底噪声过高,在音轨的开始和末尾都能听到,且Z轴带宽明显限制到较低的频率。每个轴向上的声音再现也明显不同。
X轴和Y轴上的声音明快而清晰,声调上有可分辨出的明显差异。正如预期,Z轴上的声音明显地主要为低音。图11给出了X轴(A)、Y轴(B)以及Z轴上的频谱(C)。
图11a MEMS加速度计X轴输出
图11b MEMS加速度计Y轴输出
图11c MEMS加速度计Z轴输出
如果将X、Y和Z轴混合到一起,即可实现乐声的较好重现,具有一定的明晰度。通过对混音环节进行调节,可以实现音调平衡变化,达到自然的乐声重现。由于目前加速度计的带宽限制,更大范围的高频谐波丢失了,但声音重现仍然惊人地逼真。
结语
MEMS加速度计技术在乐器的拾音应用方面具有明显的潜力,特别是那些为声反馈问题困扰的现场应用。一个体积非常小、低功耗的MEMS器件可以贴装到乐器上任何不显眼的位置,而且不会影响乐器的自然震动特性。