摘要:近年来,我国机械自动化快速发展,在机电一体化系统中传感器技术使用最为广泛,其能够提高系统的自动化水平,提高控制性能。简要地介绍了传感器技术对机电一体化系统的积极意义,重点提出了传感器技术的运用。
机电一体化涉及到机械制造、自动控制等多种技术,而传感器技术是其实现自动化控制的重要一环,它的技术高低对系统的功能起着影响和决定作用。
1 传感器技术的意义
机电一体化系统中最核心的部件就是传感器,同样的传感器技术也是系统的关键技术。传感器能够获取被测物体的相关信息,并对系统进行传输,为系统的决策和控制效率的提升提供技术保障。机电一体化系统中测量部分是由电路和传感器等部分组成,主要是对待测对象的信息采集和收纳,再给系统的控制提供参数等数据的决策参考,保证系统的有效控制。传感器在测量部分中能够提高收集参数的准确率和数据获取的速度,有利于测量模块更高效准确地为系统提供科学准确运行的信息,也能够使系统进行自动化检测。
2 传感器技术在机电一体化系统中的运用
传感器技术所涉及的范围非常广泛,主要是利用物理特性将非电量转换为电量,能够使机电一体化系统达到更高的自动化水平和准确度。
2.1汽车行业的传感器技术运用
在汽车生产中使用传感器技术是实现汽车自动化控制的关键,尤其是近些年车用电子装置的增加,如娱乐装置、防抱死系统等,都需要传感器技术。汽车机电一体化系统是用电子自动化控制代替机械式控制,这就要求汽车的整体都要覆盖检测控制装置,如底盘控制用传感器、发动机控制传感器等。
汽车传感器要求具有适应性强、抗干扰和稳定可靠性强的特点,随着新型传感器技术的应用,汽车的性能也得到了提高,如可以减少汽车的耗油量、降低尾气排放量,并为使用者提供更人性化的安全稳定服务。以汽车发动机部分为例,这一部分的传感器是众多传感器的中心,其包括温度、气体含量和爆震传感器等种类,可以有效的提高汽车发动机的实用性能。但汽车运行中会出现振动和电磁波,在选择传感器时要注意抗干扰和抗震的性能。
2.2机械加工过程中的传感器技术运用
机械加工过程中,步骤繁多需要检测的部分也很多,大致可以分为三个阶段。一是加工前,要对加工设备和配件进行自动化检测,自行判断和调整夹持方向,确定变形情况和夹紧力的大小,保证机械加工过程的正常运行。二是加工过程中,首先要确保产品的精确程度和合格率,对工程中的切削速度、力度、温度、压力等参数严格检测,达到最佳的加工条件。如其中的切削传感器技术,在切削过程中,传感器主要对切削力度的变化、过程中的振幅、声发射以及电击功率进行检测。为了检测切削状态下的稳定性和加工精度的问题,多采用应变式和压电式三向切削力传感器进行测量。三是在加工完毕后,对工件进行检测,以保证产品的合格。检测时会对工件的尺寸、光滑度、形状和圆度等位置公差测量;齿轮等样式的工件,除了以上的检测外,还要增加齿距、导程等的测量。在测量合格后,将检测参数作为下一道工序的选用条件。
2.3数控机床中的传感器技术运用
数控机床就是利用数字信号对机床的运动和加工过程进行控制,就是将刀具等工具的移动加工信息用数字代码表示。在数控机床上使用的传感器,主要有光电编码器、温度传感器、电压传感器、红外传感器等多种传感器,主要用来测量线位移、角位移、速度、压力等方面。在数控机床实际运行中,常会发生传动轴振抖的现象,为了解决这种现象,就可以使用光电传感器、超声传感器或红外传感器对传动轴振抖的现象及时检测。而且可以利用压力传感器对数控机床的夹紧力进行检测,当夹紧力大于设定值时会导致工件过紧,这时检测系统发出警报和刀具停止运行。此外,压力传感器还能够对刀具的切削力进行检测。
传感器在数控机床的液压系统、气压系统中也被广泛应用,用来检测油路和气路中的压强,当气压值低于标准值时,触点会将故障位置信息传输到数控系统。
传感器技术还应用于工业机器人中,安装的传感器主要是视觉传感器和触觉传感器两种。视觉传感器可以识别工业传送带上的机械零件是否完整,可以完成危险材料的装运和自动导航。而触觉传感器则是对零件的孔洞、曲面等因素进行检查。随着机械自动化水平的不断提高,对传感器技术的要求也不断的增加,这就要求发展连续、瞬时检测的传感器。
机电一体化系统是未来工业的发展方向,而传感器技术在机电一体化系统中的运用,能够有效的提高系统的自动化和智能化水平,提高工作效率。其主要运用于机械加工、汽车行业、数控机床等机电一体化行业,为生活和工程生产提供便利。