一种方法是采用带集成MOSFET驱动器的PWM(脉宽调制)控制器IC。然而,片上栅极驱动器产生的热和噪声会影响控制器性能。级连这类芯片以增加更多相是不现实的。用这种配置实现精确的电流均分是困难的。这种方法3相是限制相数。
另一种方法是采用分离的控制器和分离的栅极驱动器,使PWM控制器与栅极驱动器的热和噪声隔离。然而,电流均分会更复杂,因为电流感测信号路由到控制器。还有另外的控制器-驱动器延迟,这是因为它们是分离的IC。
另一种方法是采用一个带集成栅极驱动器和内置同步和电流均分的控制器。这种方法只允许偶数相数。它简化了设计,但可导致未用或多余硅片、引脚和外部元件。最重要的是片上所产生的驱动器热和噪声可能会降低控制器性能。
所以,现有的方法在选择相数中不能提供所需的自由度。理想的方法是一种可伸缩的拓扑,它能容易地增加或去除任意多相单元,而且不影响性能。这种方法必须能够在分布的相单元中相等地均分电流。这样的技术使寄生效应最小,并容易板布线。
DrMOS
配置一个减小尺寸、可伸缩多相变换器的一种方法是采用DrMOS(Driver-MOSFET)规范(Intel公司2004年11月提出)。DrMOS模块包括驱动器和功率MOSFET(图2),设计用于多相变换器。
对于一个DrMOS器件采用多芯片模块的一个主要优点是,可以使单独MOSFET性能最佳化。然而,多芯片模块的元件成本高于等效的单片方案。尽管如此,设计人员应从系统观点看成本问题。
Fairchild公司的FDMF8700是一款支持Intel的DrMOS Vcoredc-dc变换器标准、用于大电流同步降压应用的FET加驱动器的多芯片模块。这是一个完全集成的功率级方案,采用8×8mm MLP封装。它替代一个12V驱动器IC和3个N沟MOSFET,与分立元件方案相比,节省板空间50%。开关和驱动器管心的布线和尺寸是最佳化的,能工作在较高频率。
不象分立方案那样,寄生元件与板布线一起显著地降低了系统效率,FDMF8700模块的热和电气性能,使寄生效应最小,改善了总系统效率。在工作时,高端MOSFET对于快速开关是最佳的,而低端器件对于低RDS(ON)是最佳的。这种配置实现了变换12V总线到提供处理器芯核1.0V~1.4V(高达30A)电压所需求的低占空比开关。
Fairchild家族的DrMOS多芯片模块包括FDMF6700,FDMF8704,FDMF8704和FDMF8705(见图3)。
图2 DrMOS模块包含驱动器和功率MOSFETs。控制电路和输出级具有独立的地
Renesas Technology America公司的RZJ20602NP集成一个驱动器IC和高、低端功率MOSFET在56引脚QFN封装中。这种第二代驱动器-MOSFET产品工作在高达2MHz开关频率,其最大输出电流为40A。工作在1MHz,VIN=12V,VOUT=1.3V时,最高效率接近87%。在25A输出电流时,功耗只有4.4W。
NXP公司的NXP PIP212-12M也满足DrMOS规范。它由高端(控制FET)、低端(同步FET)和FET驱动器组成。它可以用做降压稳压器构建单元,每相大于30A电流、工作频率高达1MHz。
Semtech公司的SC2447是一款高频率、双相PWM降压控制器,对于Philips和Renesas DrMOS是最佳的器件,适用于网络系统电源。它采用固定频率、连续导通峰电流模式的控制,具有良好的补偿和快速瞬态响应。它产生两个独立的180?异相、30A输出。每个相具有单独的闭环软启动和过载停机定时器。
Intersil公司的ISL6307A控制微处理器芯核电压调整(图3)。微处理器负载可产生非常快沿率的负载瞬态。ISL6307A具有宽带控制环和高达12MHz的纹波频率,能为瞬态提供最佳响应。ISL6307A利用专利技术感测电流,来测量低端MOSFET导通期间跨接在低端MOSFET的RDS(ON)或输出电感器dc电阻(DCR)上的电压。电流感测器为精确电压降、通道电流平衡和过流保护提供所需的信号。可编程内部温度补偿功能补偿电流感测元件的温度系数。
图3 由4个Fair child FDMF 8704DrMOS模块和1个分离的四相Intersil ISL8307A PWM控制器组成的简化四相电压稳压器电路