首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 电源电路
STS输入配电系统解决方案
来源:本站整理  作者:佚名  2009-05-12 15:02:28



3.1 STS型自动切换开关的主控切换通道:


    (1)自动切换供电通道:由输入电源1、外置断路器开关Ka、断路器开关CB1、STS1和公用输出开关CB3组成它的第1条供电通道。由输入电源2、外置断路器开关Kb、断路器开关CB2、STS2和公用输出开关CB3组成其第2条供电通道。其中的STS1和STS2”静态开关”均是由反向并联的”SCR可控硅”来构成自动切换开关的”可控交流供电通道”。当我们将输入电源1和输入电源2分别选定为LTM开关的“优先供电电源”和“备用电源”时,在来自逻辑控制板的SCR的栅极触发信号的调控下,STS1和STS2将分别处于”导通”状态和”关断”状态。在此条件下,输入电源1就将通过Ka、CB1、STS1和CB3通道向后接负载供电。反之,如果将输入电源2选定为它的“优先供电电源”时、输入电2就将通过Kb、CB2、STS2和CB3供电通道向后接负载供电。

    (2)维修旁路供电通道:它是由两组带二匙二锁的”机电互锁”功能的CB1、CB2、CB3、CB4和CB5等断路器开关所组成的两条维修旁路来组成的。设置维修旁路的目的是:(ⅰ) 确保LTM开关在连续地向后接的网络设备供电的条件下,能对它内部的”STS功率切换”部件或”断路器开关” 等部件执行”脱机”式的更换操作; (ⅱ)防止因”误操作”而致使两路交流输入电源同时被”误接通”、并进而造成在它的输出端出现”停电” 等不幸事故的发生(注:为进一步提高LTM开关的”容错”功能,艾默生公司还能提供带双”公共输出开关”CB3和CB3A的产品)。

    (3)“热插拔”更换操作:为确保在向后接负载不间断地供电的条件下,能对“负载自动切换开关”执行“带电式”的“热插拔”操作。所有STS功率切换模块及断路器开关都釆用“可热插拔”的、模块化的设计方案。在此条件下,操作人员就可根据从它的LCD显示屏上所获得的故障信息、釆用“带电”式“热插拔”操作的办法、迅速和准确地更换掉相关的“有故障”的部件,从而达到缩短平均维修时间(MTTR)的目的。

3.2 STS型负载自动切换开关的逻辑控制部件:

    为确保UPS双总线输出供电系统能获得“信息网络”级的高可靠性,在这种STS型负载自动切换开关的控制电路中釆用如下多重冗余设计方案来增强它的”容错”功能(见图3):

 i. 釆用全数字的DSP调控技术及CANBUS数字通信技术,大大地提高它的调控精度和响应速度;
 ii.为确保DSP芯片和可控硅驱动电路能稳定和可靠地运行, 对负责向它供电的直流辅助电源釆用下述的多重冗余设计方案:(ⅰ)由两路具有平均无故障工作时间高达230万小时的“N+1”UPS冗余并机系统+EMC输入滤波器所组成的电路向两套具有“双路交流输入端”供电特性的直流辅助电源1和2提供冗余式的“净化”电源。   (ⅱ)从两套冗余式的直流电源所输出的两路DC电源以“双母线”的形式向3个逻辑控制板及可控硅驱动板提供它们所需的控制电源;
 iii.为确保SCR型“可控硅功率模块”能准确无误地运行,由3块逻辑控制板来共同对它提供”2+1” 冗余式的”栅极触发”调控信号;
 iv.为确保LTM开关能准确无误地执行切换操作,对于它内部的“2+1” 冗余式的逻辑控制板来说,还对“负载自动切换开关”的两路输入电源和输出电源的如下运行参数、执行不间断的高精度的监控及数据釆样操作:相序、频率、相位差、快速“过压及欠压”(脉宽<4ms的瞬态浪涌/电压下陷)、缓慢“过压及欠压”、峰值电流Ipk、KVA、KW、Pf、直流电源的冗余度、风扇的冗余度等。
 v.为提高LTM开关的可靠性,在它的所有的“弱电”逻辑控制部件同“强电”功率部件之间的机械设计上、都釆用“分开隔离安装”的配置方案。对于这样的LTM开关来说,只要有一路输入电源工作正常,位于它内部的所有“可维护的电气部件"均可在向负载连续供电的条件下、执行热插拔式的“更换”操作。

 在此基础上,当今的STS型“负载自动切换开关”的平均无故障工作时间(MTBF)已高达100万小时以上。显然,这样的MTBF值是远高于当今UPS工业所制造出的UPS单机的MTBF值(40-50万小时)的。

4 负载自动切换开关能执行安全切换操作的前提条件

4.1 两路输入的交流电源必须处于“相互同步入锁”工作状态

    长期的运行实践表明:为确保UPS双总线输出供电系统能安全可靠地运行,负责向“负载自动切换开关”供电的两路交流电源必须处于“相互入锁”的工作状态。这意味着:当“负载自动切换开关”在执行切换操作的瞬间,期望两路交流电源之间的相位差尽可能地接近于零(见图4a)。在这里,为讨论方便计,将输入电源1和电源2分别指定为“优先供电电源”和“备用电源”、并且假定电源1和电源2是处于同频率、同相位的理想运行状态之下的,当电源1因故出现停电或“过压/欠压”故障时,“负载自动切换开关”就会自动执行如图4a所示的“同相”切换操作,从而确保信息网络的安全运行。反之,如果在要求它执行切换操作的瞬间、不能确保电源1和电源2是处于“同相位”的工作状态的话(注:此时,即使这两路交流电源的频率和电压幅值都相等的),“此时的”负载自动切换开关就会因两路输入电源之间的相位差过大、而被置于“禁止切换”操作的工作状态之下,从而造成在“负载自动切换开关”输出端出现“停电”故障、并进而导致“网络瘫痪”故障发生。

 在此条件下,如果因故致使”负载自动切换开关”执行”误切换操作”或不顾后果地强迫它执行切换操作的话,就有可能因为在两路交流电源之间作”异相切换操作”时所产生的”瞬态电压值”相差过大(见图4b)而导致出现如下更加严重的故障发生:
 i. LTM开关的供电线路中的上游侧的“断路器开关”跳闸,造成对网络设备的大面积的停电;
 ii.分别来自两套UPS电源的电源1和电源2因出现“输出过流”故障而同时进入“自动关机”状态;
 iii.因在“切换操作瞬间”所形成的“瞬态浪涌电压过高”而损坏网络设备(例:烧毁网路中某些服务器、网关等)或致使部份的网络设备因执行“重新开机启动”的误操作而进入“网络瘫痪”状态。
  
解决上述矛盾的技术措施之一是:在两套UPS供电系统之间配置“负载同步控制器” LBS( Load Bus Synchronizer), 从而确保从两套UPS供电系统所输出的电源总是处于相互同步跟踪的“入锁状态”之中。

4.2 执行“先断后开”的切换操作:

    从上面的分析可知:只有当“优先供电电源”因故出现停电/电压或频率“超限”故障时,才需要”负载自动切换开关“执行切换操作。显然,在此瞬间,“优先供电电源”肯定是处于故障工作状态之下的。为防止在两路输入电源之间、因出现过大的“交叉性”的和破坏性的“环流”而致使原来处于正常工作状态的“备用电源”也被拖入到“自动关机”/“被损坏”的不幸事件的发生。在“负载自动切换开关”的设计中,釆用的是“先断后开”的切换操作方式、其典型的切换操作时间为:4ms左右(它包括故障诊断时间和切换操作时间)。这就意味着:当出现上述故障时,处于“优先供电”通道上的STS-1开关应该首先被“关断”。然后,再将处于“备用供电”通道上的另一个STS-2开关后“接通”,从而达到消除位于“负载自动切换开关”的上游侧的两路交流电源之间出现交叉性的“环流”的可能性(注:“环流”是指在两套交流电源之间流动的”破坏性电流”,它不是流进网络设备中的有用负载电流)。

 在此需特别说明的是,此时易产生如下误解:既然LTM开关已釆用“先断后通”的切换方式,似乎就没有必要再要求送到“负载自动切换开关”上的两路交流电源一定是处于“相互同步入锁”状态之下。然而,回答是原否定的。其原因是:为确保信息网络的安全运行(注:网络设备允许的瞬间供电中断时间为20ms左右),“负载自动切换开关”的切换时间被限定在4-5ms左右。根据可控硅的工作原理,对于原来处于导通状态的可控硅来说,一旦它被置于触发导通状态之后、即使把送到它的栅极上的“触发脉冲”撤除掉后、它将继续处于导通状态、直至到输入电源的电压下降到“过零点”为止。对于呈现电感性的供电线路而言,还要求流过可控硅中的“滞后电流”而言,还要求下降到可控硅的截止电流以下。因此,对于50Hz的供电电源来说,仍有处于“优先供电通道”上和”备用电源供电通道”上的两对SCR可控硅同时处于导通状态的可能性(其重叠导通时间在0-5ms的范围之间)。正是基于上述原因,确保UPS双总线输出系统的安全运行所需的条件仍然是:两路交流电源应该处于”相互入锁”状态之中。

5 大功率负载自动切換开关各种工作模式

5.1 正常工作模式和自动切换工作模式:

 如图5a所示,来自两套UPS并机供电系统的电源1和电源2被分别送到4个“负载自动切换开关”LTM1、2、3、4的两个输入端上(为便于负载均衡供电及有利于增強”故障隔离”功能,在该“双总线输出”供电系统中、配置有4个的LTM开关。此时,用户可在STS型“负载自动切换开关”的控制面板的LCD监示屏上、釆用“人—机对话”的菜单操作的方法来确定将那套UPS并机系统的输出电源作为它们的”优先供电电源”。例如:在这里,我们将送到LTM1和2开关上的输入电源1和电源2分别选定为它们的”优先供电电源”和”备用供电电源”, 将送到LTM3和4开关的电源2和电源1分别选定为它们的”优先供电电源”和”备用供电电源”。在此条件下,只要”优先供电电源”的电压和频率在其所允许的工作范围之內时,电源1将分别通过LTM1和LTM2开关向后接负载提供I1和I2电流; 电源2分别通过LTM3和LTM4开关向后接负载提供I3和I4电流。在LTM开关的运行中,当因故致使输入电源1发生故障时(例:发生电源1“停电”或频率/“电压超限”故障时),LTM1和2开关就会自动地以“先断后通”的工作方式、在3-5ms的时间內,将用户的负载同原来处于”备用供电电源”状态的电源2相接通(见图5b), 从而确保信息网络的安全运行(注:对于当今的网络设备来说,它们所允许的瞬间供电中断时间约为20ms左右。因此,上述的3-5ms的切换时间是绝对不会影响到信息网络的正常运行的)。

5.2 “手动/自动返回式切换”工作模式:

 在“负载自动切换开关”因故执行从“优先供电电源”→“备用供电电源”切换操作之后,当承担“优先供电电源”任务的输入电源1恢复正常工作时(它的电压、频率及同“备用供电电源”之间的“相位差”均符合所规定的窗口要求),则必须经过适当的“时间延迟”后、才允许LTM开关根据用户所设置的不同的返回式切换工作模式来分别执行手动或自动的返回式切换操作。此时,它可根据用户的愿望被分别设置成自动复位(Reset)或手动复位(Reset)两种工作模式。例如:如果LTM1和2开关被设置成自动复位(Reset)工作模式的话,当“优先供电电源”恢复正常工作状态后,连接在LTM1和2开关的后面的网络设备将会自动地重新恢复到由电源1供电的正常工作状态(见图5a)。在这里,为返回式切换操作设置一定的时间延迟的目的是:防止因“优先供电电源”在尚未进入稳定工作状态时、因仓促执行切换操作而诱发“负载自动切换开关”频繁地执行“误切换操作”的弊端。在实践中,LTM开关的典型的切换“延时时间”为:3秒左右,其可调范围为:1—60秒。反之,如果LTM开关被设置成手动复位(Reset)工作模式的话,当“优先供电电源”恢复正常工作状态后,则要求用户通过在LTM1和2开关的LCD屏上、发出执行手动切换操作的指令,它才会执行返回式切换操作。否则,这些“负载自动切换开关”的后接负载将被继续锁定在” 被禁止切换”的工作状态之中(见图5b),继续由原定的“备用电源”供电。

    5.3 “禁止切换”工作模式

上一页  [1] [2] [3] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:79,343.75000 毫秒