当光伏阵列输出电压比较小时,随着电压的变化,输出电流变化很小,光伏阵列类似为一个恒流源;当电压超过一定的临界值继续上升时,电流急剧下降,此时的光伏阵列类似为一个恒压源[2]。光伏阵列的输出功率则随着输出电压的升高有一个输出功率最大点。最大功率跟踪器的作用是在温度和辐射强度都变化的环境里,通过改变光伏阵列所带的等效负载,调节光伏阵列的工作点,使光伏阵列工作在输出功率最大点。
3 最大功率跟踪控制算法
目前,常用的最大功率跟踪方法有恒定电压跟踪法、扰动观察法和电导增量法。其中,电导增量法的跟踪准确性最高,在环境快速变化的情况下具有良好的跟踪性能,因此被广泛采用。电导增量法是通过比较光伏电池阵列的瞬时导抗与导抗变化量的方法来完成最大功率点的跟踪。
达到最大功率点的条件,即当输出电导的变化量等于输出电导的负值时,光伏电池阵列工作于最大功率点。在辐射强度和温度变化时,光伏电池阵列的输出电压能平稳追随环境的变化,且输出电压波动小[3]。
电导增量法通过设定一些很小的变化阈值,使光伏电池阵列稳定在最大功率点的邻域内,而不是围绕着最大功率点前后波动。当外界环境发生变化时,从一个稳态过渡到另外一个稳态时,电导增量法根据电流的变化就能够做出正确的判断,而不会像扰动观察那样出现误判断。
图3 电导增量法的控制流程图
图3中的U(k)、I(k)是检测到的光伏电池阵列当前电压、电流值,U(k-1)、I(k-1)是上一周期的电压、电流采样值。
光伏电池阵列与Boost电路相接时,假设外部负载仍为纯电阻负载,并忽略Boost电路本身阻抗的情况下,根据Boost电路的阻抗变换关系,容易得出Boost电路的等效输入阻抗为Req=(1-D)2R。 D为Boost电路的开关占空比,R为电阻性负载的阻抗。
图4 Boost电路的拓扑结构
对光伏电池阵列进行最大功率跟踪过程中,工作电压的控制是通过Boost升压电路完成的。当占空比D越大时,Boost电路的输入阻抗就越小,占空比D越小时,Boost电路的输入阻抗就越大。通过改变Boost电路的占空比D,使其等效输入阻抗与光伏输出阻抗相匹配,实现光伏电池的最大功率输出,这是采用Boost电路能够实现最大功率跟踪的理论依据。对于Boost电路的工作原理,本文不再赘述。
4 最大功率跟踪时的问题
采用电导增量法进行最大功率跟踪过程中,通过调节Boost电路的占空比来实现光伏电池阵列的工作点电压的控制,从而达到最大功率的跟踪。然而通过光伏电池的电压/电流曲线和电压/功率曲线可以看出,工作在恒压源区和恒流源区是改变相同步长的工作电压对光伏电池的输出功率改变是不同的。在恒流源区内,输出电流对工作电压的改变敏感度很低,而在恒压源区对电流的影响却是非常明显。为了能够更快、更精确的追踪到光伏电池的最大功率输出的工作电压电流,需要对跟踪的方法进行改进。
5 改进方法
根据相同工作电压变化量在恒压源区和恒流源区的不同影响效果,对两个区内电压变化的步长作适当调整,提高最大功率跟踪的效率。经过测试,通常使用的光伏电池的最大功率点电压一般为其开路电压的(0.75-0.85)倍,所以恒流源区与恒压源区电压范围的比例关系大概是4:1。如果判断出当前光伏电池阵列工作于恒压源区时,其工作电压肯定大于最大功率点电压,要朝着减小工作电压的方向变化,取它的电压变化步长为△V;反之,如果判断出当前光伏电池阵列工作于恒流源区时,其工作电压肯定小于最大功率点电压,要朝着增大工作电压的方向变化。为了提高跟踪速度,取它的电压变化步长为4△V。