2.2 一种双正激电路的软关断拓扑
文献[4]提出了一种双正激电路的软关断拓扑如图2所示。通过比开关结电容大得多的谐振电容C1、C2限制开关电压的上升速度,从而实现开关管的ZVS关断。由Lr、C1、C2 D3、D4和D5构成的箝位电路是无损的,并能将变压器漏感所存储的能量全部返回到输入电源中。但是开关管开通时,谐振电流从开关管流过,增加了开关管的电流应力,而且开关管为硬开通,对大功率双正激电路效率的提高有较大的实用价值。
图2 一种双正激电路的软关断拓扑
2.3 无源ZVT双正激变换器
图3示出了一种无源ZVT 双正激变换器[5] ,它通过在变压器原边增加辅助电路,实现开关管的零电压关断。其工作原理为:当两个开关管开通时,谐振电容Cr 和谐振电感Lr通过开关S2 及二极管D3谐振,将Cr上的电压改变极性,在开关管关断时,由于Cr比开关管的结电容大得多,因此限制了开关管电压的上升速度,从而实现零电压关断。这种变换器的优点是不需要增加有源开关器件,因此电路简单。但是由于在开关开通时,谐振电流要从下管S2流通,因此增加了下管的电流应力,而且开关管为硬开通,开通损耗较大。
图3 无源ZVT双正激变换器
2.4 无损缓冲ZVZCS双正激变换器
文献[6]提出了一种无损缓冲ZVZCS双正激电路如图4所示。通过辅助电感Lr实现开关管的零电流开通,由谐振电容Cr实现开关管的零电压关断。该变换器在整个负载范围内都可以实现软开关,通态损耗较小,而且缓冲电路是无损的。
图4 无损缓冲ZVZCS双正激电路
2.5 带能量吸收电路的软开关双正激变换器
文献[7]提出了一种开关管和副边整流二极管带能量吸收缓冲电路的双正激电路如图5所示。无损吸收缓冲网络实现了原边开关管的零电流开通、零电压关断和副边整流二极管的零电流开通,并且副边整流二极管不存在电压尖峰和反向恢复损耗。该电路结构比较复杂,需要附加2套缓冲电路。
图5 带能量吸收缓冲电路的软开关双正激变换器
2.6 桥臂互感型软开关双正激组合变换器
文献[8]提出了一种桥臂互感型软开关双正激组合变换器如图6所示,将两个双正激变换器的串联组合,副边采用倍流整流电路,适用于高输入电压、低压大电流输出的场合。开关管承受的电压仅为输入直流电压的一半。利用耦合电感中储存的能量实现开的零电压开关,同时采用移相控制技术调节输出电压和实现软开关。由于采用了带两个原边绕组的变压器,所以能够使变压器磁芯工作在双象限和实现输入电容电压的自动均压。该电路的缺点是每个桥臂上的辅助电路增加了开关管的电流应力,电路的导通损耗比较大,辅助电路较复杂。
图6 桥臂互感型软开关双正激组合变换器
2.7 改进的桥臂互感型软开关双正激组合变换器
文献[9]提出了一种改进的桥臂互感型软开关双正激组合变换器如图7所示,不仅具有图6电路所具有的优点,而且不需要采用图6电路所示的辅助电路。通过PWM控制开关管的导通和关断,利用偶合的谐振电感Lr1和Lr2实现开关管的零电压开通,但是软开关范围受一定的限制。由于输入电容的自动均压方式是通过原边电流流经开关管和变压器在两个电容之间相互传递能量实现的,因而会增加开关管的电流应力和导通损耗。而且副边整流二极管的电压应力较大,不适合应用在高输出电压场合。该变换器适用于高输入电压、低压大电流输出的大功率场合。
图7 改进的桥臂互感型软开关双正激组合变换器