图 4. 电流调节升压转换器的小信号模型
表 1. 公式 3中两种转换器模型的差异
计算两种电路的负载周期 D 以及 VOUT 与 REQ 的修改值所使用的方式都相同。Sn 及 Se 分别是升压转换器的自然形成电感斜率与补偿斜率,而 fSW 是切换频率。关于电压调节升压转换器的小信号模型与电流调节升压转换器的模型,两者之间真正的差异来自乘以跨导用项 (1 – D)/Ri 的抗阻 KR 以及主要电极 wp。这些差异已在表 1 予以概述。详细信息请见参照 1。由于在调节电压的转换器中, RSENSE 值一般远低于 ROUT 值,因此,电流调节转换器的增益 (其中 ROUT = REQ) 几乎都低于电压调节转换器的增益。
测量回路
若要测量控制回路增益与电压调节转换器的相位,网络或专用回路增益/相位分析仪一般会使用 1:1 变压器将小信号通过小阻抗 (RINJ) 注入回路中。然后,分析仪便会根据频率测量并比较 A 点的注入信号与 R 点的回传信号,之后,报告幅度差异 (增益) 与时间延迟 (相位) 的比例。只要 A 点的阻抗远低于 R 点的阻抗,即可在回路中的任一处插入此阻抗,否则注入的信号会过大,因而干扰转换器的运作点。如图 5 所示,高阻抗节点是一般插入此阻抗的位置,也是 FB 电阻在输出电容 (低阻抗节点) 侦测输出电压的地方。
图 5. 电压调节转换器的控制回路测量
在电流调节配置中,如果负载本身是上端 FB 电阻,则无法通过与 LED 串联的方式将注入电阻插入。转换器的运作点必须先予以变更,才能将电阻插入于FB 引脚与感应电阻之间,如图 6 所示。在某些情况下,可能需要非反向单位增益缓冲放大器,以降低注入点的阻抗,并减少测量噪声。
图 6. 电流调节转换器的控制回路测量
用来测量回路的是Venable回路分析仪,它与图 6 中的测量设定相同但不含放大器,而且 RINJ = 51.1 W。电流调节转换器的模型是以 Mathcad® 构建,并且使用 TPS61170 的数据表设计参数,其中的核心与 TPS61165 相同。当 VIN = 5 V 且 ILED 经设定为 350 mA 时,该模型会产生 TPS61165EVM 的预期回路响应,如图 7 所示,可便于与测得的数据进行比较。
图 7. 在 VIN = 5 V 且 ILED = 350 mA 的情况下所测得及模拟的回路增益与相位
观察 WLED 动态阻抗的变化,并参照 IC 放大器增益中标准 LED I-V 曲线及芯片间变化,便不难解释所测得及模拟增益两者之间的差异。
结论
数学模型虽然并非全然准确,但不失为设计人员设计 WLED 电流调节升压转换器时可以运用的初步方法。设计人员也能够以其中一种方法测量控制回路。