这个电路的构成原理是,PRT和PIT的一次侧有LR+L1和Cr的并联谐振电路;二次侧有N2电感L2和Cs的并联谐振电路。图4中的V1和V2分别为两组的并联谐振脉冲电压。用电流驱动变压器CDT控制开关管Q1的断合工作。由于控制了PRT的NR电感LR,所以能够控制谐振电路V1的脉冲宽度 △T1,达到稳定输出电压E0的目的。电压谐振波形如图4(b)所示,图中的工作参数为fs=110 kHz,控制范畴为T1=3~4.5 μs,控制宽度为△T1=1.5μs,电能效率为ηAC-DC=83%。
另外,除了图4用PIT一次侧连接PRT的脉冲宽度控制方式VRC之外,还有用PIT的二次侧连接PRT的脉冲宽度控制方式VRC,这个电路的构成原理是,PIT的一次侧有L1和Cr、二次侧N2有电感L2+LR和Cs的这两组并联谐振电路。对于Eo的稳压,由于控制PRT的NR电感LR,所以能够控制二次侧谐振电压V2的脉冲宽度△T2。用PIT二次侧连接PRT的脉冲宽度控制方式VRC的典型工作参数为fs=71.5 kHz,控制范畴T2=7~12μs,控制宽度△T2=5μs。
上述两种谐振电压脉冲宽度控制方式电路都不需要PRT的主线圈NR、控制线圈NC和磁芯间的距离,所以可以使之小型化。另外,上述的VRC是最大负载功率 Pomax≥150 W的情况,在AC输入电压VAC=220 V时,为了确保开关元件Q1,PIT和PRT的可靠性,输入整流滤波电路几乎都设计成全桥整流方式。
由于供给VRC电路的直流输入电压Ei较高,伴随着VAC↑→Ei↑,则变压器一次侧的谐振电流↓,Q1和Cr上的电压谐振脉冲电压Vcp↑,其Vcp可高达1 500 V以上。所以,Q1和Cr要采用大于1 800 V耐高压的元件,并且还要对Q1的饱和压降VCE(SAT)、下降时间tf及高频特性的大小有所限制。因此,对上述电路进行改进,得到如图5所示的升压型复合电压控制方式VRC。
2.3 升压型复合电压控制方式
图5(a)由PIT的三次线圈N3、升压二极管DB、主绕组有抽头的PRT(主绕组NR分为分为NR'和NR"线圈;NR'为升压控制线圈;NR"为谐振电压脉冲幅度控制线圈)、滤波电解电容Ci构成了升压型复合电压控制方式VRC。这就是用1组控制电路,同时能够控制升压EB和并联谐振脉冲电压幅度 Vcp,并达到Eo稳定的复合电压控制方式VRC。
设DB的正向导通电压为VF,PRT主绕组NR的总电感量为LR,PIT的一次线圈N1的电感量为L1,则从Ei和一次测VRC得到的升压电压EB,如式(4)表示。