2 控制系统实现
先进的控制策略、高性能的控制芯片和高速开关器件相结合是变频电源发展的主流趋势。在SP-WM波形生成中,已很少采用模拟方法,原因是该方法电路复杂、器件一致性差、输出波形易受器件老化、外界干扰等因素的影响,因而可靠性差。数字方法在可靠性、灵活性、可控性等方面具有模拟方法无法比拟的优越性,所以本变频电源采用Intel公司16位单片机80C196 MC作为控制核心,组成全数字化控制系统。80C196 MC是专门为电机高速控制所设计的一种真正16位单片机,广泛应用于变频控制中。它有独具特色的波形发生器WFG、A/D转换器、事件处理阵列EPA等,控制系统可大大简化。
4路SPWM脉冲控制信号由三相波形发生器WFG产生,输出电压和电流相位脉冲信号输入2路EPA捕捉口,进行相位差检测。2个接触器JC1和JC2由主控板控制,完成启动和保护功能。6路十位A/D转换器完成输出电压电流、直流母线电压电流和高压量的采集变换。显示和故障记忆单元接入由4个EPA口构成的串行总线。
3 控制系统软件设计
控制系统软件采用C-196语言编制,软件主要包括:主程序、电压和频率给定程序、波形中断程序、电压闭环控制程序(PI)、数字锁相环程序及外部中断程序等。
控制软件的首要任务是产生SPWM脉冲,为了节省机时,提高运行速度,首先构造正弦波数据表。正弦数据表具有反对称性,即sinα=-sin(-α),因此只要建立0°~180°的正弦数据表即可使用。由0°开始,每隔0.15°安排1项数据,直到179.5°,共计1200项数据,存入EPROM中。软件运行时,循环查询正弦表数据,控制波形发生器WFG即可产生所需的SPWM控制脉冲。
变频电源主程序完成系统初始化及参数设定等功能,电压和频率给定程序,捕捉旋转编码器输出的给定脉冲,进行给定计数和方向辨别。波形中断程序为控制系统软件的核心,中断优先级最高,完成正弦数据表查询、波形发生器数据重置、占空比计算等功能。电压闭环子程序进行PI控制算法计算,实时调整SPWM脉冲波的占空比,达到稳定输出电压的目的。数字锁相程序采用捕捉中断,计算电压和电流的相位差,并实时调整输出频率,直到电压和电流同相。外部中断程序响应各保护电路的保护信号,封锁脉冲输出,记忆故障参数。
4 抗干扰措施
在硬件上采用磁平衡式电压电流互感器进行强弱电隔离,信号传输采用屏蔽电缆,并一点接地。模拟信号在进入微处理器AD前进行多级滤波,最大限度消除虚假信号的侵入。控制板设计中,数字电路和模拟电路分开布置,数字地与模拟地采用一点连接,消除数字电路和模拟电路的相互干扰及地电位的不平衡。控制电源采用开关电源,加装电源滤波器,滤除馈入的共模干扰信号。主控板采用电源监控芯片,监视电源电压,出现电压不稳时将系统复位。
软件上,数字滤波消除脉冲干扰,采用80C196 MC微处理器中看门狗功能,在容易引起系统死循环或软件颠覆的位置加入监视点,出现故障时系统自动复位。对可能引起电源输出超限的位置加入极限判别语句,保证任何情况都不会出现变频电源的不正常输出。
5 结束语
根据以上原则研制开发的大容量试验变频电源已在现场交流耐压试验中成功应用,取得良好效果。该电源体积小、重量轻、输出功率大,输出电压和频率稳定度高,可方便地组成串联谐振耐压试验系统,对变压器、发电机、GIS和高压交联聚乙烯电缆等容性设备进行交流耐压试验,可广泛应用于电力系统基建和修试单位的设备安装和检修试验等工作中。