图 3. 闪光脉冲期间 LM3554 PFET 的导通电阻和 LEDI/NETC 的 ESD 二极管。
在稳态下,LEDI/NTC的ESD二极管的VF为-622mV,对应结温 95.2℃(环境温度为25℃时)。在稳定状态下,测得的PFET导通电阻为154mΩ,对应结温105℃。图3 还描绘了LM3554的热容。VF和RPMOS的响应表现呈现类似于一阶RC的指数级上升,计算等式如下:
热容则为:
使用ESD二极管的正向电压时获得的热容为0.009J/℃,使用PFET导通电阻时获得的热容为0.0044 J/℃。温度读数之间的差异可能是由于器件上的温度梯度而造成的。PFET紧邻电流源,预计其温度上升将较快,且温度会比LEDI/NTC引脚的ESD二极管高,后者离IC上的功率器件较远。造成这样的温度差异是由于器件核心区域两个测量点之间的热阻和热容引起的。另外,响应大约为单次常量指数。实际上,功耗会随着PFET和电流源升温而发生些微的变化。这将导致随着结温上升,PDISS也些微增加。
当处理脉冲工作器件(如闪光LED驱动器)时,对热阻抗模型比对单独热阻的考虑深入得多。例如,闪光脉冲电流为1.2A,VIN为5V且VLED为3.4V。在这种情况下,器件在上电模式下PDISS=2.14W。当RJ-A为48℃/W且环境温度为50℃时,稳定状态模型指示核心温度会上升至153℃,这比最高工作结温高出28℃。如果我们考虑热容(0.0044℃/J)并将200ms闪光脉冲宽度计算在内,则可以获得对核心温度更好的估算,大约为113℃。
电感器和温度
迄今为止对关于LM3554和高温的讨论也适用于LM3554的功率电感。与半导体器件(如LM3554)一样,功率电感器损耗过多热量将改变器件特性并导致电感和电源工作异常。功率电感温度过高,通常会导致直流绕线电阻增加和饱和电流限制降低。
电感器电阻
电感线圈的电阻温度系数导致电感直流电阻会随着温度变化。线圈通常为铜制,温度系数约为 3.9mΩ/℃,计算其电阻的等式如下:
或相当于0.39%/℃变化。
让我们再看一下LM3554,评估套件中指定的电感器是Toko生产的FDSE0312-2R2。在 TA= 25℃时,测得的电阻为137mΩ。在 85℃时,电阻变化 为50℃×0.39%=19.5%(或变为164mΩ)。在RMS电感电流为2A且VIN=3.6V时,电感电阻变化会导致效率降低约1.5%。
电感器饱和度
或许在高温状况下,功率电感最为关注的问题是额定饱和电流下降。使用较大的RMS电流时,内部功耗导致电感温度上升,从而降低电感的饱和点。在饱和时,电感铁磁核心材料已达到磁通密度(B(t)),该密度不再随磁场强度(H(t))成正比增加。相反,当饱和时,由于电感电流增加而引起任何磁场强度增加,会导致非常小的磁通密度的增加。
如果在示波器上查看开关稳压器电感电流,我们会看到器件进入饱和状态时,电感电流斜率增加。这相当于电感下降。纹波电流的增加将导致 RMS 电流和电感器的开关损耗增加,这两项都会增加电感的功耗并降低效率。
电感器在特定点达到饱和时会产生突然的饱和响应,或者会与 FDSE0312-2R2 电感器一样产生逐渐的饱和响应。然而,电感器制造商通常会将饱和点指定为既定电流和温度下电感值的特定百分比跌幅。
图4描绘了工作在饱和状态下电感器的实例。该例子使用TDK生产的VLS4010-2R2(2.2μH)电感器,在进入饱和状态时出现急剧下降。当采用最小闪光脉冲宽度32ms,在升压模式下LM3554会显示出这种效应。较窄的脉冲宽度限制了电感器的自热,从而可以通过调节环境温度来控制电感器的温度。
图 4. 电感器饱和与温度。