首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 电源电路
双开关正激转换器及其应用设计
来源:本站整理  作者:佚名  2010-04-07 11:21:21



  因此,MOSFET的总损耗为:

Plosses=Pcond+PSW,on+PSW,off=173+149+324=646 mW   (18)

  5) 二极管

  次极二极管D1和D2维持相同的峰值反相电压(PIV),结合二极管降额因数(kD)为40%,可以计算出PIV,见等式(19):

公式  (19)

  由于PIV<100 V,故能够选择30 A、60 V、TO-220封装的肖特基二极管MBRB30H60CT。

  二极管导通时间期间的导电损耗为:

Pcond,forward=IoutVfDCmax=10x0.5x0.45=2.25 W   (20)

  关闭时间期间的导电损耗为:

Pcond,freewheel=IoutVf(1-DCmin)=10x0.5x(1-0.39) =3.05 W  (21)

  NCP1252应用设计:NCP1252元件计算

  1) 用于选择开关频率的电阻Rt

  采用一颗简单电阻,即可在50至500 kHz范围之间选择开关频率(FSW)。假定开关频率为125 kHz,那么我们就可以得到:

公式  (22)

  其中,VRt是Rt引脚上呈现的内部电压参考(2.2 V)。

  2) 感测电阻

  NCP1252的最大峰值电流感测电压达1 V。感测电阻(Rsense)以初级峰值电流的20%余量来计算,其中10%为励磁电流,10%为总公差:

公式  (23)

公式  (24)

  3) 斜坡补偿

  斜坡补偿旨在防止频率为开关频率一半时出现次斜坡振荡,这时转换器工作在CCM,占空比接近或高于50%。由于是正激拓扑结构,重要的是考虑由励磁电厂所致的自然补偿。根据所要求的斜坡补偿(通常为50%至100%),仅能够外部增加斜坡补偿与自然补偿之间的差值。

  目标斜坡补偿等级为100%。相关计算等式如下:

  内部斜坡:

公式  (25)

  初级自然斜坡:

公式  (26)

  次级向下斜坡:

公式  (27)

  自然斜坡补偿:

公式  (28)

  由于自然斜坡补偿低于100%的目标斜坡补偿,我们需要计算约33%的补偿:

公式  (29)

公式  (30)

  由于RcompCCS网络滤波需要约220 ns的时间常数,故:

公式  (31)

  4) 输入欠压电阻

  输入欠压(BO)引脚电压低于VBO参考时连接IBO电流源,从而产生BO磁滞。

公式  (32)

公式  (33)      

  NCP1252演示板图片及性能概览

  NCP1252演示板的详细电路图参见参考资料2,其顶视图和底视图则见图3。

NCP1252演示板的顶视图及底视图

图3:NCP1252演示板的顶视图及底视图。

  在室温及额定输入电压(390 Vdc)条件下,NCP1252演示板不同负载等级时的能效如图4所示。从此图可以看出,负载高于40%最大负载时,工作能效高于90%。这演示板还能藉在转换器次级端同步整流,进一步提升能效达几个百分点。

NCP1252演示板在室温及额定输入电压(390 Vdc)条件下的能效图

图4:NCP1252演示板在室温及额定输入电压(390 Vdc)条件下的能效图。

  如前所述,NCP1252提供软启动功能,其中一个目标应用就是替代UC38xx。NCP1252有一个专用引脚,支持调节软启动持续时间及控制启动期间的峰值。

  另外,NCP1252的待机能耗性能也很突出。这器件能藉将输入欠压(BO)引脚接地来关闭,而关闭时VCC输入端汲入的电流小于100 µA。

  总结:

  本文介绍了正激转换器磁芯复位技术的原理,比较了三次绕组、RCD钳位及双开关正激等常见的磁芯复位技术,分析了双开关正激转换器的优势,并结合安森美半导体基于双开关正激磁芯复位技术的NCP1252固定频率控制器,分享了这双开关正激转换器的应用设计过程。这器件集成了输入欠压检测、软启动及过载检测等众多特性。测试结果显示,NCP1252提供极高的工作能效和极低的待机能耗,适合UC38xx替代、ATX电源、适配器及其它任何要求低待机能耗的应用。

上一页  [1] [2] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:186,570.30000 毫秒