为了与CMOS标准工艺兼容,电路中PNP的e,b,c区分别采用P+,N-well,P-sub集电极接地。Q2和Q1的发射极面积比为8:1,流过Q1和Q2的电流相等,这样△VBE等于VTln 8。流过电阻R1的电流与热力学温度成正比。三路镜像电流源使得流过P2,P3,P4的电流相等(I1=I2=I3)。
输出电压VREF为:
电路中的温度补偿系数K为:
通过调节R4的值,可以调节输出电压VREF的大小。在电源电压变化时,P2,P3,P4的漏源电压值保持不变,与电源电压无关,其栅极电压由运放调节。为了降低电路的复杂度,应用电流反馈原理,运放采用简单的一阶运放,由于VDD的变化多于GND的变化,故运放的输入采用NMOS的差分对结构。因为整个电路在低压下工作,故整个电路设计的重点是要保证低压下运放的正常工作。
由于带隙基准源存在两个电路平衡点,即零点和正常工作点。当基准源工作在零点时,节点1、2的电压等于零,基准源没有电流产生。固需要设计一个启动电路,避免基准源工作在平衡零点。本设计的启动电路由N5、N6和P7构成。当电路工作在零点时,N6管导通,迅速提高节点1、2的电压,产生基准电流,节点1的电压通过P7和N5组成的反相器,使N6管完全截止,节点1、2的电压回落在稳定的工作点上,基准源开始正常工作。
电路的器件参数如表1所示,P2,P3,P4管的尺寸较大,是为了降低电路中的1/f噪声。电流镜的负载管P5,P6和差分对管N1,N2的宽长比较大,以抑制电路的热噪声。由于电路中的电阻值较大,故在工艺中用阱电阻实现。电容C0有助于电路的稳定,同时还可以减小于运放的宽度,有助于降低噪声的影响。
2 仿真与结果分析
在Cadence设计平台下的Spectre仿真器中基于CSMC 0.5 μm CMOS工艺模型对电路进行了仿真。得到电路的温度特性曲线、直流电源抑制特性曲线、交流PSRR特性曲线、启动时间曲线如图4所示。各项仿真结果参数如表2所示。
3 结语
在应用典型CMOS电压基准源的基础上,综合一级温度补偿、电流补偿技术,设计了带隙电压基准源电路。该带隙基准源电路的电源工作范围为1.6~4 V,工作温度为-10~+130℃,基准输出电压VREF为(650.5±0.5)mV,温度系数可低至2.0 ppm/℃,电源抑制比为-70 dB。仿真结果证明了设计的正确性。
上一页 [1] [2]