·上一文章:基于LT4180设计的精密负载调整电源方案
·下一文章:阀控式密封铅酸蓄电池的均衡充电原理
连接方式2与方式1的频率输入条件相同,在输入单频信号功率为-28 dBm时,优化电路的集成运放增益大于11 dB,并且对带外噪声有了更大的抑制作用,信噪比也比连接方式1提高了1 dB。在输入单频信号功率为-12 dBm时,由于共模输入电压的减小,使得AD8062能够工作在线性范围,各次谐波功率均小于-45 dBc,输出信号功率也有了4 dB提高。优化电路成功地完成了在射频接收前端的试验测试,能够为后端电路检测信号提供较大的信号功率。而满足A/D采样门限要求。
同时,在ISM频段定位系统整体测试中,AD8062的使用能够使得接收射频前端达到接收机灵敏度的要求,信号处理部分能够正确捕获定位数据。在试验调试中发现,双集成运放AD8062的I/Q两路输入信号功率不能有太大的偏差,否则,电路不能正常工作。在设计的定位系统射频前端电路中,采用正交下变频器AD8347的I/Q两路信号输出功率偏差较小,AD8062能够满足设计要求。
3 结语
通过对集成运放连接电路的非线性分析,找到了AD8062产生谐波失真的原因,并且优化设计了新的电路连接方式。这种优化电路设计在不改变集成运放增益的前提下,使接收射频前端的灵敏度提高了1 dB,大大提高了整个系统的动态范围,并且能够保证接收机在大信号输入时的谐波失真小于-50 dBc。在ISM频段定位系统的设计中,优化设计电路输出信号信噪比和功率大小均能满足A/D的采样要求,能够为后端定位检测算法提供相关数据。在不同条件和不同电路的设计系统中。集成运放的应用同样会出现非线性失真问题,上述集成运放的非线性分析方法具有一定的参考价值。